Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727497 | PMC |
http://dx.doi.org/10.7554/eLife.87445 | DOI Listing |
Alzheimers Dement
December 2024
The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Regenerative Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
Analysis of genome-scale evolution has been difficult in large, endangered animals because opportunities to collect high-quality genetic samples are limited. There is a need for novel field-friendly, cost-effective genetic techniques. This study conducted an exome-wide analysis of a total of 42 chimpanzees (Pan troglodytes) across six African regions, providing insights into population discrimination techniques.
View Article and Find Full Text PDFNat Commun
January 2025
Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
In this study, the olfactory threshold concentration was introduced in the statistical physics approach to provide fruitful and deep discussions. Indeed, a modified mono-layer mono-energy model established using statistical physics theory was successfully used to theoretically study the adsorption involved in the olfactory response of (R)-(-)-carvone and (S)-(+)-carvone key food odorants (KFOs) on cow (Bos taurus) olfactory receptor btOR1A1 through the analysis of the different model physicochemical parameters. Thus, stereographic results indicated that the two carvone enantiomers were non-parallelly docked on btOR1A1 binding sites during the adsorption process since the different values of n were superior to 1.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.
Sensory compensation occurs when loss of one sense leads to enhanced perception by another sense. We have identified a previously undescribed mechanism of sensory compensation in female mosquitoes. Odorant receptor co-receptor () mutants show enhanced attraction to human skin temperature and increased heat-evoked neuronal activity in foreleg sensory neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!