Terahertz metamaterial technology, as an efficient nondestructive testing method, has shown great development potential in biological detection. This paper presents a stainless steel terahertz metamaterial absorber that achieves a near-perfect absorption of incident metamaterial waves with a 99.99% absorption at 2.937 THz. We demonstrate the theoretical discussion about the absorber and the application in sensing. The effect of the metamaterial absorber's structural parameters on the sensing performance is also analyzed. Simulation results show that the sensor can detect analytes with a refractive index between 1.0 and 1.8. Additionally, the performance of the sensor in detecting analytes in three states (solid, liquid, and gas) is analyzed in detail, and the sensitivity and the FoM of the sensor to detect methane are 22.727 THz/RIU and 568.175 , respectively. In addition, the terahertz sensor has the advantage of wide incident angle insensitivity, maintaining a good sensing performance within a wide manufacturing tolerance range of -10 to 10%. Compared to metal-dielectric-metal or dielectric-metal structures, the proposed sensor adopts stainless steel as the only manufacturing material, which has the advantages of simple structure, low manufacturing costs, and high sensitivity, and has potential application prospects in label-free high-sensitivity biomedical sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.501793DOI Listing

Publication Analysis

Top Keywords

terahertz metamaterial
8
stainless steel
8
sensing performance
8
sensor detect
8
sensor
6
metamaterial
5
ultrasensitive refractive
4
refractive sensor
4
sensor based
4
based on stainless
4

Similar Publications

Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.

View Article and Find Full Text PDF

Qualitative and quantitative detection of sex-targeted hormones in chicken embryo based on terahertz spectroscopy and metamaterial technology.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Gender identification of chick embryos at the early stages of incubation is of significant importance to poultry industry. Existing studies showed reproductive hormone concentrations are associated with gender of chick embryos. Accurate detection of reproductive hormone concentration can assist in gender identification.

View Article and Find Full Text PDF

Fruits and vegetables account for around a third of all food loss and waste. Post-harvest, retail and consumer losses and waste could be reduced with better ripeness assessment methods. Here we develop a sub-terahertz metamaterial sticker (called Meta-Sticker) that can be attached to a fruit to provide insights into the edible mesocarp's ripeness without cutting into the produce.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

All dielectric metasurface based diffractive neural networks for 1-bit adder.

Nanophotonics

April 2024

Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing, 100048, China.

Diffractive deep neural networks ( ) have brought significant changes in many fields, motivating the development of diverse optical computing components. However, a crucial downside in the optical computing components is employing diffractive optical elements (DOEs) which were fabricated using commercial 3D printers. DOEs simultaneously suffer from the challenges posed by high-order diffraction and low spatial utilization since the size of individual neuron is comparable to the wavelength scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!