The detection of various cryogenic targets, including the polar cryosphere, high-altitude clouds, and cosmic galaxies through spectral analysis, is a highly valuable area of research. Nevertheless, creating a very long wave infrared (VLWIR) imaging spectrometer capable of detecting these targets presents a significant challenge. In this paper, we introduce a design concept for an ultra-wide temperature difference athermalization VLWIR multifunctional imaging spectrometer. Initially, we analyze the multifunctional characteristics of an imaging spectrometer that utilizes a coaxial optical layout. Subsequently, we delve into the constraints associated with smile aberration correction and coaxial optical layout of the imaging spectrometer, which utilizes a grism as the dispersion component. Finally, we construct a computational model to determine the parameters of the grism. In the study, we provide evidence that imaging spectrometers with symmetrical structural forms can effectively minimize the impact of temperature variations on the system. Building on these findings, we developed the ultra-wide temperature difference athermalization VLWIR multifunctional imaging spectrometer, which boasts a temperature variation range over 200 K. This versatile instrument features a multifunctional mode that can be easily tuned to meet a range of observation missions. The spectrometer has a spectral range of 12µ to 16µ, a field of view (FoV) of 16.8 ×6 , a numerical aperture (NA) of 0.334, an alignment temperature of 293.15 K, and an operating temperature of 60 K. The analysis results demonstrate the many working modes and high imaging quality of the designed imaging spectrometer. This paper's research offers a fresh approach for low-temperature VLWIR imaging spectrometer systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.503330DOI Listing

Publication Analysis

Top Keywords

imaging spectrometer
32
ultra-wide temperature
12
temperature difference
12
multifunctional imaging
12
imaging
10
spectrometer
9
long wave
8
wave infrared
8
vlwir imaging
8
difference athermalization
8

Similar Publications

Dual-stage excitation source improves the analytical sensitivity of miniaturized optical emission spectrometer.

Talanta

January 2025

Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. Electronic address:

Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity.

View Article and Find Full Text PDF

We present the design of a VMI spectrometer optimized for attosecond spectroscopy in the 0-40 eV energy range. It is based on a compact three-electrode configuration where the lens shape, size, and material have been optimized using numerical simulations to improve the spectral resolution by a factor of ∼5 relative to the initial design [Eppink and Parker, Rev. Sci.

View Article and Find Full Text PDF

A hyperspectral open-source imager (HOSI).

BMC Biol

January 2025

Centre for Ecology & Conservation, University of Exeter, Penryn, UK.

Background: The spatial and spectral properties of the light environment underpin many aspects of animal behaviour, ecology and evolution, and quantifying this information is crucial in fields ranging from optical physics, agriculture/plant sciences, human psychophysics, food science, architecture and materials sciences. The escalating threat of artificial light at night (ALAN) presents unique challenges for measuring the visual impact of light pollution, requiring measurement at low light levels across the human-visible and ultraviolet ranges, across all viewing angles, and often with high within-scene contrast.

Results: Here, I present a hyperspectral open-source imager (HOSI), an innovative and low-cost solution for collecting full-field hyperspectral data.

View Article and Find Full Text PDF

Sustainable Synthesis of Nitrogen-Embedded CuS Quantum Dots for In Vitro and In Vivo Breast Cancer Management.

ACS Appl Bio Mater

January 2025

Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India.

The burgeoning field of nanomedicine is exploring quantum dots for cancer theranostics. In recent years, chemically engineered copper sulfide (CuS) quantum dots (QDs) have emerged as a multifunctional platform for fluorescence-based sensors with prominent applications in imaging and chemodynamic therapy of tumor cells. The present study demonstrates the sustainable synthesis of nitrogen-embedded copper sulfide (N@CuS) quantum dots for the first time and unveils their potential application in in vitro and in vivo breast cancer management.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!