Imaging speed and spatial resolution are key factors in optical diffraction tomography (ODT), while they are mutually exclusive in 3D refractive index imaging. This paper presents a multi-harmonic structured illumination-based optical diffraction tomography (MHSI-ODT) to acquire 3D refractive index (RI) maps of transparent samples. MHSI-ODT utilizes a digital micromirror device (DMD) to generate structured illumination containing multiple harmonics. For each structured illumination orientation, four spherical spectral crowns are solved from five phase-shifted holograms, meaning that the acquisition of each spectral crown costs 1.25 raw images. Compared to conventional SI-ODT, which retrieves two spectral crowns from three phase-shifted raw images, MHSI-ODT enhances the imaging speed by 16.7% in 3D RI imaging. Meanwhile, MHSI-ODT exploits both the 1st-order and the 2nd-order harmonics; therefore, it has a better intensity utilization of structured illumination. We demonstrated the performance of MHSI-ODT by rendering the 3D RI distributions of 5 µm polystyrene (PS) microspheres and biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.508138DOI Listing

Publication Analysis

Top Keywords

optical diffraction
12
diffraction tomography
12
structured illumination
12
multi-harmonic structured
8
structured illumination-based
8
illumination-based optical
8
imaging speed
8
spectral crowns
8
raw images
8
mhsi-odt
5

Similar Publications

The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate's focal length and the InP substrate's thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher-up to 24.

View Article and Find Full Text PDF

Cementitious Capillary Crystallization Waterproofing Material (CCCW), as an efficient self-healing agent, can effectively repair damage in concrete structures, thereby extending their service life. To address the various types of damage encountered in practical engineering applications, this study investigates the impact of different mixing methods for CCCW (including internal mixing, curing, and post-crack repair) on the multi-dimensional self-healing performance of concrete. The self-healing capacity of concrete was evaluated through water pressure damage self-healing tests, freeze-thaw damage self-healing tests, mechanical load damage self-healing tests, and crack damage self-healing tests.

View Article and Find Full Text PDF

The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N'-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which are needed for inducing PR effects. All the photocurrents measured at 640 nm were well simulated by a two-trapping site model considering photocarrier generation and recombination processes of the charge transfer (CT) complex between PBI and PDAA.

View Article and Find Full Text PDF

2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.

View Article and Find Full Text PDF

This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands HL and HL were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. HL was obtained from the reaction of carbohydrazide and salicylaldehyde, while HL was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!