Quantum states of physical domains in molecular systems: A three-state model approach.

J Chem Phys

Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile.

Published: December 2023

The physical regions (domains or basins) within the molecular structure are open systems that exchange charge between them and, consequently, house a fractional number of electrons (net charge). The natural framework describing the quantum states for these domains is the density matrix (DM) in its grand-canonical version, which corresponds to a convex expansion into a set of basis states of an integer number of electrons. In this report, it is shown that the solution for these quantities is supported by the DM expansion into three states of different numbers of particles: the neutral and two (edge) ionic states. The states and the average number of particles in the domains (fractional occupation population) are determined by the coefficients of the expansion in terms of the fundamental transference magnitudes, revealing the donor/acceptor character of the domains by which the quantum accessible states are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0182310DOI Listing

Publication Analysis

Top Keywords

quantum states
8
number electrons
8
states
6
domains
5
states physical
4
physical domains
4
domains molecular
4
molecular systems
4
systems three-state
4
three-state model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!