Objectives: Aberrant serotonin (5-hydroxytryptamine, 5-HT) metabolism and neurite outgrowth were associated with abdominal pain in irritable bowel syndrome (IBS). We previously demonstrated that 5-HT receptor subtype 7 (5-HT₇) was involved in visceral hypersensitivity of IBS-like mouse models. The aim was to compare the analgesic effects of a novel 5-HT₇ antagonist to reference standards in mouse models and investigate the mechanisms of 5-HT₇-dependent neuroplasticity.

Methods: Two mouse models, including Giardia post-infection combined with water avoidance stress (GW) and post-resolution of trinitrobenzene sulfonic acid-induced colitis (PT) were used. Mice were orally administered CYY1005 (CYY, a novel 5-HT₇ antagonist), alosetron (ALN, a 5-HT₃ antagonist), and loperamide (LPM, an opioid receptor agonist) prior to measurement of visceromotor responses (VMR). Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin receptors (NTRs) were assessed.

Results: Peroral CYY was more potent than ALN or LPM in reducing VMR values in GW and PT mice. Increased mucosal 5-HT₇-expressing nerve fibers were associated with elevated levels in the mouse colon. We observed higher colonic and expression in GW mice, and increased expression in PT mice compared with control mice. Human SH-SY5Y cells stimulated with mouse colonic supernatant or exogenous serotonin exhibited longer nerve fibers, which CYY dose-dependently inhibited. Serotonin increased and expression via 5-HT₇ but not 5-HT₃ or 5-HT₄, while upregulation was dependent on all three 5-HT receptor subtypes.

Conclusions: Stronger analgesic effects by peroral CYY were observed compared with reference standards in two IBS-like mouse models. The 5-HT₇-dependent NTR upregulation and neurite elongation may be involved in intestinal hypernociception.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-18-687DOI Listing

Publication Analysis

Top Keywords

mouse models
16
intestinal hypernociception
8
5-ht receptor
8
ibs-like mouse
8
analgesic effects
8
novel 5-ht₇
8
5-ht₇ antagonist
8
reference standards
8
peroral cyy
8
mice increased
8

Similar Publications

Secondary motor cortex tracks decision value during the learning of a non-instructed task.

Cell Rep

January 2025

Institut Interdisciplinaire de Neurosciences (IINS), University Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Centre Broca Nouvelle-Aquitaine, 146, rue Léo-Saignat, 33076 Bordeaux, France. Electronic address:

Optimal decision-making depends on interconnected frontal brain regions, enabling animals to adapt decisions based on internal states, experiences, and contexts. The secondary motor cortex (M2) is key in adaptive behaviors in expert rodents, particularly in encoding decision values guiding complex probabilistic tasks. However, its role in deterministic tasks during initial learning remains uncertain.

View Article and Find Full Text PDF

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!