Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Skeletal muscle regeneration is a dynamic process driven by adult muscle stem cells and their progeny. Mostly quiescent at a steady state, adult muscle stem cells become activated upon muscle injury. Following activation, they proliferate, and most of their progeny differentiate to generate fusion-competent muscle cells while the remaining self-renews to replenish the stem cell pool. While the identity of muscle stem cells was defined more than a decade ago, based on the co-expression of cell surface markers, myogenic progenitors were identified only recently using high-dimensional single-cell approaches. Here, we present a single-cell mass cytometry (cytometry by time of flight [CyTOF]) method to analyze stem cells and progenitor cells in acute muscle injury to resolve the cellular and molecular dynamics that unfold during muscle regeneration. This approach is based on the simultaneous detection of novel cell surface markers and key myogenic transcription factors whose dynamic expression enables the identification of activated stem cells and progenitor cell populations that represent landmarks of myogenesis. Importantly, a sorting strategy based on detecting cell surface markers CD9 and CD104 is described, enabling prospective isolation of muscle stem and progenitor cells using fluorescence-activated cell sorting (FACS) for in-depth studies of their function. Muscle progenitor cells provide a critical missing link to study the control of muscle stem cell fate, identify novel therapeutic targets for muscle diseases, and develop cell therapy applications for regenerative medicine. The approach presented here can be applied to study muscle stem and progenitor cells in vivo in response to perturbations, such as pharmacological interventions targeting specific signaling pathways. It can also be used to investigate the dynamics of muscle stem and progenitor cells in animal models of muscle diseases, advancing our understanding of stem cell diseases and accelerating the development of therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65944 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!