There is increasing awareness that cortical and cancellous bone differ in regulating and responding to pharmaceutical therapies, hormone therapies, and other treatments for age-related bone loss. Three-point bending is a common method used to assess the influence of a treatment on the mid-diaphysis region of long bones, which is rich in cortical bone. Uniaxial compression testing of mouse vertebrae, though capable of assessing bones rich in cancellous bone, is less commonly performed due to technical challenges. Even less commonly performed is the pairing of three-point bending and compression testing to determine how a treatment may influence a long bone's mid-diaphysis region and a vertebral centrum similarly or differently. Here, we describe two procedures to make compression testing of mouse lumbar vertebrae a less challenging method to perform in parallel with three-point bending: first, a procedure to convert a three-point bending machine into a compression testing machine, and second, an embedding method for preparing a mouse lumbar vertebra loading surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/65502 | DOI Listing |
Sci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFHeliyon
November 2024
Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.
One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham, India, 641112.
With rapid technological advancements, videos are captured, stored, and shared in multiple formats, increasing the requirement for summarization techniques to enable shorter viewing durations. Key Frame Extraction (KFE) algorithms are crucial in video summarization, compression, and offline analysis. This study aims to develop an efficient KFE approach for generic videos.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
To investigate the dynamic compression properties and crushing features of gas-containing coal under complex geological environments, a dynamic and static combined loading test system was independently developed for conducting triaxial dynamic compression tests. The dynamic stress-strain curves under different strain rates were analyzed to study the effects of strain rate and gas pressure on the dynamic mechanical characteristics. Crushed coal samples were sieved and analyzed using a standard sieve and fractal theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!