With the rising prevalence of bone-related injuries, it is crucial to improve treatments for fractures and defects. Tissue engineering offers a promising solution in the form of injectable hydrogel scaffolds that can sustain the release of growth factors like bone morphogenetic protein-2 (BMP-2) for bone repair. Recently, we discovered that tetra-PEG hydrogels (Tetra gels) undergo gel-gel phase separation (GGPS) at low polymer content, resulting in hydrophobicity and tissue affinity. In this work, we examined the potential of a newer class of gel, the oligo-tetra-PEG gel (Oligo gel), as a growth factor-releasing scaffold. We investigated the extent of GGPS occurring in the two gels and assessed their ability to sustain BMP-2 release and osteogenic potential in a mouse calvarial defect model. The Oligo gel underwent a greater degree of GGPS than the Tetra gel, exhibiting higher turbidity, hydrophobicity, and pore formation. The Oligo gel demonstrated sustained protein or growth factor release over a 21-day period from protein release kinetics and osteogenic cell differentiation studies. Finally, BMP-2-loaded Oligo gels achieved complete regeneration of critical-sized calvarial defects within 28 days, significantly outperforming Tetra gels. The easy formulation, injectability, and capacity for sustained release makes the Oligo gel a promising candidate therapeutic biomaterial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724494PMC
http://dx.doi.org/10.1016/j.reth.2023.11.008DOI Listing

Publication Analysis

Top Keywords

oligo gel
16
sustained release
8
release growth
8
growth factors
8
tetra gels
8
gel
7
release
6
oligo
5
injectable phase-separated
4
phase-separated tetra-armed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!