In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720526 | PMC |
http://dx.doi.org/10.1128/jmbe.00089-23 | DOI Listing |
J Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFNeurochem Res
January 2025
Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.
View Article and Find Full Text PDFChemistryOpen
January 2025
Electronics Engineering College, Ninevah University, North east side of Mosul University - Stadium Entrance Gate - Mosul University, Mosul, Iraq.
One of the key parameters that affects efficiency, power density and performance of a supercapacitor (SC) is the equivalent series resistance (ESR). In this study we propose a method to estimate ESR from the charging kinetics which has practical applications. Therefore, to study the ESR of the SC we must look at the different factors that affect this resistance.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University;
Stroke is a leading cause of death and disability worldwide. Most cases of stroke are ischemic and result from the occlusion of the middle cerebral artery (MCA). Current pharmacological approaches for the treatment of ischemic stroke are limited; therefore, novel therapies providing effective neuroprotection against ischemic injury following stroke are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!