Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, biosynthesized nanoparticles (NPs) have played a vital role as an alternative to physical and chemical methods. Here, a distinctive bioinspired synthesis of zinc oxide nanoparticles (ZnO NPs) has been introduced using leaf extracts of as the reducing agent by using distilled water and methanol. The synthesized catalysts were analyzed through ultraviolet-visible spectroscopy, dynamic light scattering, scanning electron microscopy, Fourier transform infrared, energy-dispersive X-ray analysis, and X-ray diffraction for NP synthesis, morphology, functional group, elemental composition, and peak crystallinity analysis. The phytochemical analysis of 2,2-diphenyl-1-picrylhydrazyl (DPPH), total flavonoid content, total alkaloid content, and total phenolic content of the crude methanolic extract of the plant was also performed, suggesting the greatest potential as the supporting material for ZnO NPs. The NPs were investigated for their catalytic efficiency in the degradation of dyes (rhodamine B dye) and against important human food-borne pathogens (, , and ). ZnO NPs exhibited a strong catalytic activity in the degradation of dyes and against bacteria. The results also showed an enhanced activity of ZnO NPs of methanolic extract (ZnO-M) composites compared to zinc oxide of distilled water (ZnO-D). The % age degradation of the dye, , and linear relationship were obtained from pseudo-first-order kinetics. The highest reduction rate in 30 and 60 min was observed under sunlight by ZnO-M and ZnO-D, respectively. The rate constant for the reduction of the dye was 13.6 × 10 min and 6.8 × 10 min, respectively (numerical values). For ZnO-M, ln() ≈ 0.309. For ZnO-D, ln() ≈ -0.385. These rate constants represent the degradation of the dye in the presence of ZnO-M and ZnO-D catalysts. In addition, NPs were found to be most active against (18 mm in the case of ZnO-M and 15 mm in the case of ZnO-D) than and . The results suggested that the prepared ZnO NPs could be used in pharmaceutical industries as well as photocatalysts. ZnO-M had greater control over particle size and morphology, potentially resulting in smaller, more uniform NPs. ZnO-D achieved fine size control but not potentially better than that compared to organic solvents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720296 | PMC |
http://dx.doi.org/10.1021/acsomega.3c05947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!