Background: An increased posterior tibial slope (PTS) corresponds with an increased risk of graft failure after anterior cruciate ligament (ACL) reconstruction (ACLR). Validated methods of manual PTS measurements are subject to potential interobserver variability and can be inefficient on large datasets.
Purpose/hypothesis: To develop a deep learning artificial intelligence technique for automated PTS measurement from standard lateral knee radiographs. It was hypothesized that this deep learning tool would be able to measure the PTS on a high volume of radiographs expeditiously and that these measurements would be similar to previously validated manual measurements.
Study Design: Cohort study (diagnosis); Level of evidence, 2.
Methods: A deep learning U-Net model was developed on a cohort of 300 postoperative short-leg lateral radiographs from patients who underwent ACLR to segment the tibial shaft, tibial joint surface, and tibial tuberosity. The model was trained via a random split after an 80 to 20 train-validation scheme. Masks for training images were manually segmented, and the model was trained for 400 epochs. An image processing pipeline was then deployed to annotate and measure the PTS using the predicted segmentation masks. Finally, the performance of this combined pipeline was compared with human measurements performed by 2 study personnel using a previously validated manual technique for measuring the PTS on short-leg lateral radiographs on an independent test set consisting of both pre- and postoperative images.
Results: The U-Net semantic segmentation model achieved a mean Dice similarity coefficient of 0.885 on the validation cohort. The mean difference between the human-made and computer-vision measurements was 1.92° (σ = 2.81° [ = .24]). Extreme disagreements between the human and machine measurements, as defined by ≥5° differences, occurred <5% of the time. The model was incorporated into a web-based digital application front-end for demonstration purposes, which can measure a single uploaded image in Portable Network Graphics format in a mean time of 5 seconds.
Conclusion: We developed an efficient and reliable deep learning computer vision algorithm to automate the PTS measurement on short-leg lateral knee radiographs. This tool, which demonstrated good agreement with human annotations, represents an effective clinical adjunct for measuring the PTS as part of the preoperative assessment of patients with ACL injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725654 | PMC |
http://dx.doi.org/10.1177/23259671231215820 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.
Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.
View Article and Find Full Text PDFJ Occup Health
January 2025
Panasonic Corporation, Department Electric Works Company/Engineering Division, Osaka, Japan.
Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.
Methods: Train data (n=190, age 54.
Esophagus
January 2025
Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!