Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)--poly(N,N-dimethylacrylamide)--poly(N,N-dimethylacrylamide--N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with β-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723243 | PMC |
http://dx.doi.org/10.1002/adfm.202213368 | DOI Listing |
Adv Funct Mater
August 2023
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA.
Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)--poly(N,N-dimethylacrylamide)--poly(N,N-dimethylacrylamide--N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona.
View Article and Find Full Text PDFCell Mol Bioeng
October 2019
Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA.
Introduction: Biomaterials can provide localized reservoirs for controlled release of therapeutic biomolecules and drugs for applications in tissue engineering and regenerative medicine. As carriers of gene-based therapies, biomaterial scaffolds can improve efficiency and delivery-site localization of transgene expression. Controlled delivery of gene therapy vectors from scaffolds requires cell-scale macropores to facilitate rapid host cell infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!