The conventional approach for images encryption entails transforming a regular image into an encrypted image that resembles noise. However, this noise-like encrypted image is susceptible to drawing the attention of an attacker when transmitted through a public channel. Hence, there has been a recent surge in the interest of academics towards visually secure image encryption techniques. In a broad sense, encryption methods that include visual significance should prioritize four key elements: the resemblance between the cypher picture and the carrier image, the capacity for embedding, the attainment of good recovery quality, and resilience against many forms of attacks. To address the issues pertaining to inadequate visual security, limited resistance against attacks, and subpar quality of reconstructed images observed in contemporary image encryption and compression methodologies. This paper proposes a visually secure image encryption method based on improved semi-tensor product compressed sensing, two-way cross zigzag obfuscation, and IWT-HD-SVD embedding. Firstly, the plain image is sparsely represented in the Discrete Wavelet Transform (DWT) domain, and a two-way cross zigzag mismatch strategy is proposed to disarrange the coefficient vectors. Then the plain image is encrypted as a secret image by the improved semi-tensor product compression sensing technique. After that, IWT-HD-SVD embedding technique is proposed to embed the secret image into the carrier image to generate the final meaningful cryptographic image. This dramatically improves the visual security of the cryptographic image. Simulation results show that the quality of the decrypted image is approximately 36 dB and up to 44 dB. In addition, the cryptographic image is highly robust against common noise attacks of 0.05 %.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724576 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e22548 | DOI Listing |
Plant Cell Environ
January 2025
The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
Background: Crohn's disease and irritable bowel syndrome may both cause abdominal pain and diarrhea. Irritable bowel syndrome not only is an important differential diagnosis for Crohn's disease but also occurs in one out of three patients with Crohn's disease in remission in parallel. If not adequately diagnosed and treated, additional functional symptoms such as fatigue and/or muscle pain may develop, indicating a more severe course.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
Background: Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions.
Purpose: Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function.
Materials And Methods: A total of 321 subjects were enrolled in this study.
Int J Retina Vitreous
January 2025
Fondation Asile des Aveugles, Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Avenue de France 54, Lausanne, 1001, Switzerland.
Background: This study evaluates the efficacy of intravitreal Faricimab in reducing pigment epithelium detachment (PED) and fluid volumes in both treatment-naïve eyes and eyes unresponsive to anti-VEGF mono-therapies, all diagnosed with type 1 macular neovascularization (T1 MNV) over a period of 12-month.
Methods: A retrospective, single-center cohort study was conducted at the Jules Gonin Eye Hospital, Lausanne, Switzerland. Clinical records of treatment-naïve and non-responder switch patients presenting T1 MNV secondary to neovascular age-related macular degeneration (nAMD) from September 2022 to March 2023 were reviewed.
Fluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!