The accurate and comprehensive mapping of land cover has become a central task in modern environmental research, with increasing emphasis on machine learning approaches. However, a clear technical definition of the land cover class is a prerequisite for learning and applying a machine learning model. One of the challenging classes is naturalness and human influence, yet mapping it is important due to its critical role in biodiversity conservation, habitat assessment, and climate change monitoring. We present an interpretable machine learning approach to map patterns related to territorial protected and anthropogenic areas as proxies of naturalness and human influence using satellite imagery. To achieve this, we train a weakly-supervised convolutional neural network and subsequently apply attribution methods such as Grad-CAM and occlusion sensitivity mapping. We propose a novel network architecture that consists of an image-to-image network and a shallow, task-specific head. Both sub-networks are connected by an intermediate layer that captures high-level features in full resolution, allowing for detailed analysis with a wide range of attribution methods. We further analyze how intermediate layer activations relate to their attributions across the training dataset to establish a consistent relationship. This makes attributions consistent across different scenes and allows for a large-scale analysis of remote sensing data. The results highlight that our approach is a promising way to observe and assess naturalness and territorial protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725256 | PMC |
http://dx.doi.org/10.3389/frai.2023.1278118 | DOI Listing |
J Chem Inf Model
January 2025
Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.
Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (A.A., L.S.D., E.K.O., R.K.).
Background: While universal screening for Lp(a; lipoprotein[a]) is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a; ARISE), a validated machine learning tool, to health system electronic health records to increase the yield of Lp(a) testing.
View Article and Find Full Text PDFJ Hand Surg Eur Vol
January 2025
Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.
This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Department of Medicine, Division of Cardiology (M.P., N.J.P., N.P.S.), Duke University, Durham, NC.
Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.
Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.
Stat Methods Med Res
January 2025
School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong, China.
One primary goal of precision medicine is to estimate the individualized treatment rules that optimize patients' health outcomes based on individual characteristics. Health studies with multiple treatments are commonly seen in practice. However, most existing individualized treatment rule estimation methods were developed for the studies with binary treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!