Background: A green sample preparation method named deep eutectic solvent-based single drop microextraction (DES-SDME) was developed and optimized for determining trace metribuzin, dichlorvos, and fenthion.
Methods: Two hundred seventy experimental runs were performed, and the optimal values of the five influential factors in the DES-SDME method were determined. The design of the study was based on one factor at a time and the peak area of high-performance liquid chromatography was used as a benchmark for comparing analysis results.
Results: After optimizing the effective factors, the linearity range, detection limit and quantification limit of the method were determined by drawing calibration curves for the studied analytes.
Conclusion: The results indicated the success of the developed method in obtaining acceptable figures of merit as a green preparation method with accuracy and precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719709 | PMC |
http://dx.doi.org/10.18502/ijph.v52i11.14043 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria.
Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).
View Article and Find Full Text PDFBMC Public Health
January 2025
Gavi, The Vaccine Alliance, Geneva, Switzerland.
Background: The National Expanded Program on Immunization in the Democratic Republic of the Congo implemented a program in 9 Provinces to generate georeferenced immunization microplans to strengthen the planning and implementation of vaccination services. The intervention aimed to improve identification and immunization of zero-dose children and overall immunization coverage.
Methods: This study applies a mixed-methods design including survey tools, in-depth interviews and direct observation to document the uptake, use, and acceptance of the immunization microplans developed with geospatial data in two intervention provinces and one control province from February to June 2023.
Metabolites
January 2025
Natural Products & Food Research and Analysis-Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Wilrijk, Belgium.
Background: Olive leaves are a rich source of polyphenols, predominantly secoiridoids, flavonoids, and simple phenols, which exhibit various biological properties. Extracts prepared from olive leaves are associated with hypoglycemic, hypotensive, diuretic, and antiseptic properties. Upon ingestion, a substantial fraction of these polyphenols reaches the colon where they undergo extensive metabolism by the gut microbiota.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!