A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validating racial and ethnic non-bias of artificial intelligence decision support for diagnostic breast ultrasound evaluation. | LitMetric

Purpose: Breast ultrasound suffers from low positive predictive value and specificity. Artificial intelligence (AI) proposes to improve accuracy, reduce false negatives, reduce inter- and intra-observer variability and decrease the rate of benign biopsies. Perpetuating racial/ethnic disparities in healthcare and patient outcome is a potential risk when incorporating AI-based models into clinical practice; therefore, it is necessary to validate its non-bias before clinical use.

Approach: Our retrospective review assesses whether our AI decision support (DS) system demonstrates racial/ethnic bias by evaluating its performance on 1810 biopsy proven cases from nine breast imaging facilities within our health system from January 1, 2018 to October 28, 2021. Patient age, gender, race/ethnicity, AI DS output, and pathology results were obtained.

Results: Significant differences in breast pathology incidence were seen across different racial and ethnic groups. Stratified analysis showed that the difference in output by our AI DS system was due to underlying differences in pathology incidence for our specific cohort and did not demonstrate statistically significant bias in output among race/ethnic groups, suggesting similar effectiveness of our AI DS system among different races ( for all).

Conclusions: Our study shows promise that an AI DS system may serve as a valuable second opinion in the detection of breast cancer on diagnostic ultrasound without significant racial or ethnic bias. AI tools are not meant to replace the radiologist, but rather to aid in screening and diagnosis without perpetuating racial/ethnic disparities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721939PMC
http://dx.doi.org/10.1117/1.JMI.10.6.061108DOI Listing

Publication Analysis

Top Keywords

racial ethnic
12
artificial intelligence
8
decision support
8
breast ultrasound
8
perpetuating racial/ethnic
8
racial/ethnic disparities
8
pathology incidence
8
breast
5
system
5
validating racial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!