Prior to the onset of vision, neurons in the developing mammalian retina spontaneously fire in correlated activity patterns known as retinal waves. Experimental evidence suggests that retinal waves strongly influence the emergence of sensory representations before visual experience. We aim to model this early stage of functional development by using movies of neurally active developing retinas as pre-training data for neural networks. Specifically, we pre-train a ResNet-18 with an unsupervised contrastive learning objective (SimCLR) on both simulated and experimentally-obtained movies of retinal waves, then evaluate its performance on image classification tasks. We find that pre-training on retinal waves significantly improves performance on tasks that test object invariance to spatial translation, while slightly improving performance on more complex tasks like image classification. Notably, these performance boosts are realized on held-out natural images even though the pre-training procedure does not include any natural image data. We then propose a geometrical explanation for the increase in network performance, namely that the spatiotemporal characteristics of retinal waves facilitate the formation of separable feature representations. In particular, we demonstrate that networks pre-trained on retinal waves are more effective at separating image manifolds than randomly initialized networks, especially for manifolds defined by sets of spatial translations. These findings indicate that the broad spatiotemporal properties of retinal waves prepare networks for higher order feature extraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723543 | PMC |
In the early stages of retinal development, a form of correlated activity known as retinal waves causes periodic depolarizations of immature retinal ganglion cells (RGCs). Retinal waves are crucial for refining visual maps in the brain's retinofugal targets and for the development of retinal circuits underlying feature detection, such as direction selectivity. Yet, how waves alter gene expression in immature RGCs is poorly understood, particularly at the level of the many distinct types of RGCs that underlie the retina's ability to encode diverse visual features.
View Article and Find Full Text PDFOphthalmic Physiol Opt
December 2024
Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.
Purpose: The aim of this study was to investigate changes in the light-adapted (LA) electroretinogram (ERG) associated with paediatric amblyopia.
Method: A total of 220 eyes from 81 postoperative paediatric cataract patients and 29 healthy children were enrolled in four groups, namely controls, unilaterally amblyopic eyes, non-amblyopic fellow eyes and bilaterally affected eyes. Differences in LA ERG variables (peak time and amplitude of a- and b-waves and photopic negative response [PhNR]) were compared across groups, as well as their associations with visual acuity and changes in axial length.
Orphanet J Rare Dis
November 2024
Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Genetics, Metabolism, Beijing, 100045, China.
Invest Ophthalmol Vis Sci
November 2024
Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., México.
Purpose: Growth hormone (GH) has neuroprotective effects that have not been evaluated in the mammalian visual system. This study tested the hypothesis that GH administration can promote retinal neuroprotection in an optic nerve crush (ONC) model in male rats.
Methods: The ON was compressed for 10 seconds, and bovine GH was injected concomitantly to injury for 14 days (0.
J Ethnopharmacol
January 2025
The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Hunan Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China. Electronic address:
Ethnopharmacological Relevance: Lycium barbarum L. and Salvia miltiorrhiza Bunge (Gouqi and Danshen, LS) have led to their inclusion in the pharmacopoeia and healthcare systems of numerous countries globally. Traditional herbs known as LS are used in China to treat retinitis pigmentosa (RP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!