Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Insects frequently form heritable associations with beneficial bacteria that are vertically transmitted from parent to offspring. Long term vertical transmission has repeatedly resulted in genome reduction and gene loss rendering many such bacteria incapable of independent culture. Among aphids, heritable endosymbionts often provide a wide range of context-specific benefits to their hosts. Although these associations have large impacts on host phenotypes, experimental approaches are often limited by an inability to independently cultivate these microbes. Here, we report the axenic culture of Fukatsuia symbiotica strain WIR, a heritable bacterial endosymbiont of the pea aphid, . Whole genome sequencing revealed similar genomic features and high sequence similarity to previously described strains, suggesting the cultivation techniques used here may be applicable to . F. symbiotica strains from distantly related aphids. Microinjection of the isolated strain into uninfected aphids revealed that it can reinfect developing embryos, and is maintained in subsequent generations via transovarial maternal transmission. Artificially infected aphids exhibit similar phenotypic and life history traits compared to native infections, including protective effects against an entomopathogenic species. Overall, our results show that . F. symbiotica may be a useful tool for experimentally probing the molecular mechanisms underlying heritable symbioses and antifungal defense in the pea aphid system.
Importance: Diverse eukaryotic organisms form stable, symbiotic relationships with bacteria that provide benefits to their hosts. While these associations are often biologically important, they can be difficult to probe experimentally, because intimately host-associated bacteria are difficult to access within host tissues, and most cannot be cultured. This is especially true of the intracellular, maternally inherited bacteria associated with many insects, including aphids. Here, we demonstrate that a pea aphid-associated strain of the heritable endosymbiont, Fukatsuia symbiotica, can be grown outside of its host using standard microbiology techniques, and can readily re-establish infection that is maintained across host generations. These artificial infections recapitulate the effects of native infections making this host-symbiont pair a useful experimental system. Using this system, we demonstrate that . F. symbiotica infection reduces host fitness under benign conditions, but protects against a previously unreported fungal pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723312 | PMC |
http://dx.doi.org/10.1101/2023.12.05.570145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!