Euclidean space is the fabric of the world we live in. Whether and how geometric experience shapes our spatial-temporal representations of the world remained unknown. We deprived rats of experience with crucial features of Euclidean geometry by rearing them inside translucent spheres, and compared activity of large hippocampal neuronal ensembles during navigation and sleep with that of cuboid cage-reared controls. Sphere-rearing from birth permitted emergence of accurate neuronal ensemble spatial codes and preconfigured and plastic time-compressed neuronal sequences. However, sphere-rearing led to diminished individual place cell tuning, similar neuronal mapping of different track ends/corners, and impaired neuronal pattern separation and plasticity of multiple linear track experiences, partly driven by reduced preconfigured network repertoires. Subsequent experience with multiple linear environments over four days largely reversed these effects, substantiating the role of geometric experience on hippocampal neural development. Thus, early-life experience with Euclidean geometry enriches the hippocampal repertoire of preconfigured neuronal patterns selected toward unique representation and discrimination of multiple linear environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723290PMC
http://dx.doi.org/10.1101/2023.12.04.570026DOI Listing

Publication Analysis

Top Keywords

geometric experience
12
multiple linear
12
euclidean geometry
8
linear environments
8
neuronal
6
experience
5
experience sculpts
4
sculpts development
4
development dynamics
4
hippocampal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!