Large quantities of spent lithium-ion batteries (LIBs) will inevitably be generated in the near future because of their wide application in many fields. It will cause not only resource waste but also environmental pollution if these spent batteries are not properly handled. Until now, the recycling of spent lithium manganate batteries has centered on high-valuable elements such as lithium; however, manganese element and current collector Al foil have not yet attracted wide attention. In this work, aluminum-doped manganese dioxide was synthesized by overall recycling cathode active materials and current collector Al foil from a spent lithium manganate battery. Employing such aluminum-doped manganese dioxide as the cathode material of aqueous Zn batteries, it displays better electrochemical performance than manganese dioxide prepared by only recycling the cathode active materials. The overall recycling not only simplifies the recycling process but also realizes high-value recycling of spent lithium manganate batteries. We offer new tactics for overall recycling of cathodes from spent LIBs and designing high-performance manganese dioxide cathodes for aqueous Zn batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c14103 | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Among direct recycling methods for spent lithium-ion batteries, solid-state regeneration is the route with minimal bottlenecks for industrial application and is highly compatible with the current industrial cathode materials production processes. However, surface structure degradation and interfacial impurities of spent cathodes significantly hinder Li replenishment during restoration. Herein, we propose a unique advanced oxidation strategy that leverages the inherent catalytic activity of spent layered cathode materials to address these challenges.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China.
The recycling of spent lithium-ion batteries has become a common concern of the whole society, with a large number of studies on recycling management and recycling technology, but there is relatively little study on the pollution release during the recycling process. Pollution will restrict the healthy development of the recycling industry, which makes relevant research very significant. This paper monitored and analyzed the battery recycling pretreatment process in a formal factory, and studied the pollution characteristics of particulate matter, heavy metals, and microplastics under different treatment stages.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct regeneration of spent lithium-ion batteries offers economic benefits and a reduced CO footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high-temperature annealing. However, the sluggish Li transport kinetics, which predominantly relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China. Electronic address:
Wet-crushing with aqueous media protection is considered safer and more efficient than common inert-gas protected dry-crushing in preprocessing spent lithium-ion batteries (LIBs). However, it is also accompanied with the releasement and transformation of hazardous electrolyte, while the mechanisms and pollution impact yet remain unknown. Based on a self-built wet-crushing system, this topic was systematically investigated here.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!