Cowpea ( L.) is a legume consumed as a high-quality plant protein source in many parts of the world. In August 2023, it was observed that a plant disease affected cowpea growth in Yiyang (28.34°N, 112.55°E), China. The average disease incidence was 10%, resulting in 8.5% economic losses in approximately 3,000 m. The symptoms initially appeared as brown lesions near the stem-soil interface and the lesions were colonized by white mycelia. As the disease progressed, the disease symptoms included constriction and brown staining at the base of the stem, covered with a small amount of white mycelia. Eventually, the entire plants withered and collapsed and many sclerotia were scattered on the ground around the diseased stem. Twenty samples (10 sclerotia and 10 diseased tissue fragments) were collected from symptomatic plants for causal agent isolation. Samples were disinfected with 70% ethanol for 30 s, 5% NaClO for 1 min, rinsed three times with sterile water, dried and placed on potato dextrose agar (PDA) plates at 28℃ in the dark. In total, 20 isolates were obtained by the hyphal tip method (Terrones et al. 2022) and showed a consistent phenotype of white cottony mycelia on PDA with an growth rate of 12.9 to 21.3 mm/day (n = 20). Sclerotia formed at five to eight days post inoculation, were initially whitish, turning beige and eventually dark brown. The diameter of mature sclerotia ranged from 0.89 to 2.13 mm (mean = 1.64±0.29 mm; n =50). For pathogen identification, ITS1/ITS4 (White et al. 1990) and EF1-983F/EF1-2218R (Rehner and Buckley 2005) primers were used to amplify the internal transcribed spacer regions (ITS) and translation elongation factor-1 alpha gene (TEF-1α), respectively. The sequences of all 20 isolates showed 99% to 100% similarity with sequences from GenBank by BLAST analysis. The sequences of two representative strains, ID1 and ID4, were deposited in GenBank. The ITS sequences of ID1 (OR689482) and ID4 (OR689481) were >99% similar to strain QJ7 (593/596 bp; MZ750983) and strain Kale078 (565/568 bp; MN872304), respectively. Also, TEF-1α sequences of ID1 (OR713735) and ID4 (OR713736) were >99% similar to the sequences of strain HS-Sr (1073/1073 bp; OL416131) and strain MSB1-2 (1070/1075 bp; MN702790), respectively. Phylogenetic analysis based on ITS and TEF1-α sequences indicated that ID1 and ID4 clustered into the clade. Based on morphology and sequence analyses, the isolates ID1 and ID4 were identified as (anamorph ). Pathogenicity tests were conducted three times on healthy 30-day-old cowpea seedlings. Five plants were inoculated with 6-day-old mycelial discs (6 mm) of ID1 or ID4 at the base of the seedlings (n = 30) while four plants were inoculated with a sterile PDA disc as a control (n = 12). All seedlings were cultivated in a greenhouse with a temperature of 26°C to 28°C and relative humidity 60% to 80% with a 14/10 h light/dark photoperiod. Eight days later, all the fungal inoculated seedlings showed symptoms including brown necrosis and collapse of the stems, and eventual withering of the seedlings. Control plants remained asymptomatic. The causal pathogens were reisolated in PDA plates and identified by ITS sequence analysis, completing Koch's postulates. To our knowledge, this is the first report of causing southern blight on cowpea in China. Early accurate diagnosis will help farmers to adopt suitable practices to control disease outbreaks and reduce losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-10-23-2208-PDN | DOI Listing |
Mol Biol Rep
July 2024
Biology Department, College of Science, Mustansiriyah University, Baghdad, Iraq.
Background: Colorectal cancer (CRC) is the second most deathly worldwide and third most common cancer, CRC is a very heterogeneous disease where tumors can form by both environmental and genetic risk factors and includes epigenetic and genetic alternations. Inhibitors of DNA binding proteins (ID) are a class of helix-loop-helix transcription regulatory factors; these proteins are considered a family of four highly preserved transcriptional regulators (ID1-4), shown to play significant roles in many processes that are associated with tumor development. ID family plays as negatively dominant antagonists of other essential HLH proteins, concluding the creation of non-functional heterodimers and regulation of the transcription process.
View Article and Find Full Text PDFSci Rep
July 2024
Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones.
View Article and Find Full Text PDFMol Genet Genomics
March 2024
Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 South University Ave, Yangzhou, Jiangsu, 225009, China.
Glia
July 2024
Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs.
View Article and Find Full Text PDFPlant Dis
December 2023
Hunan Institute of Microbiology, 639864, Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Xinkaipu Road N0.81, Changsha, Hunan, China, 410001;
Cowpea ( L.) is a legume consumed as a high-quality plant protein source in many parts of the world. In August 2023, it was observed that a plant disease affected cowpea growth in Yiyang (28.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!