Silicon (Si) is regarded as the most potential anode material for next-generation lithium-ion batteries (LIBs). However, huge volume expansion hinders its commercial application. Here, a yolk-shell structural nitrogen-doped carbon coated Si@SiO is prepared by SiO template and HF etching method. The as-prepared composite exhibits superior cycling stability with a high reversible capacity of 577 mA h g at 1 A g after 1000 cycles. The stress effect of SiO on stabilizing the electrochemical performance of Si anode is systematically investigated for the first time. In situ thickness measurement reveals that the volume expansion thickness of Si@SiO upon charge-discharge is obviously smaller than Si, demonstrating the electrode expansion can be effectively inhibited to improve the cyclability. The density functional theory (DFT) calculation further demonstrates the moderate young's modulus and enhanced hardness after SiO coating contribute significantly to the mechanical reinforcement of overall Si@SiO@void@NC composite. Various post-cycling electrode analyses also address the positive effects of inner stress from the Si core on effectively relieving the damage to electrode structure, facilitating the formation of a more stable inorganic-rich solid electrolyte interphase (SEI) layer. This study provides new insights for mechanical stability and excellent electrochemical performance of Si-based anode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202310240 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFDalton Trans
January 2025
Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 6 Bd du Maréchal Juin, 14050 Caen, France.
Light-emitting electrochemical cells (LECs) are an attractive technology in the field of solid state light devices (SSLDs) as their simple architectures allow the preparation of cost-effective lighting devices. Consequently, low-cost and sustainable emitters are highly desirable. Transition metal complexes are attractive in this field as they have been proved to possess compatible optoelectronic properties.
View Article and Find Full Text PDFACS Nano
January 2025
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.
View Article and Find Full Text PDFNano Lett
January 2025
School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
Layered VO·6HO is a promising candidate for aqueous zinc batteries (AZBs) but with moderate electrochemical performances. Herein, the charge storage properties of VO·6HO are markedly improved by building up the heterointerface on its surface using amorphous molybdenum trioxide as the heteromaterial. The amorphous molybdenum trioxide functioning as the proton reservoir enables the proton-involved electrochemical reactions and induces the formation of a built-in electric field along the [001] orientation at the heterointerface constructed by the (001) plane of VO·6HO, which could provide new diffusion pathways and extra sites for ion storage.
View Article and Find Full Text PDFiScience
January 2025
Department of Physics, University of California, Merced, Merced, CA, USA.
Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CHNHPbICl) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!