Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2023.12.018 | DOI Listing |
Sci Total Environ
December 2024
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Mª Aurèlia Capmany 69, Girona 17003, Catalonia, Spain. Electronic address:
Atmospheric water harvesting (AWH) is one of the most efficient, sustainable, cost-effective, and promising techniques for addressing world's water scarcity. Over 4.3 billion people around the world struggle to access clean, abundant, and safe drinking water.
View Article and Find Full Text PDFCommun Eng
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
Sorption-based atmospheric water harvesting (SAWH) offers a promising solution to global water scarcity. However, practical implementation is limited by discontinuities in the mass transfer process inside sorbents. This perspective reviews current SAWH technologies and introduces a new concept, mass transfer of SAWH (MT-SAWH), which ensures continuous water collection by facilitating the movement of water molecules within a fixed sorbent bed.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
Sorption-based atmospheric water harvesting (SAWH) shows great promise to mitigate the worldwide water scarcity, especially in the arid regions. Salt-based composite materials are the extensively used sorbents for SAWH, however, they suffer from complex preparation to avoid salt leakage. Furthermore, the significant amount of heat produced during water harvesting process is often neglected and wasted.
View Article and Find Full Text PDFACS Nano
November 2024
School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China.
To address the increasingly serious water scarcity across the world, sorption-based atmospheric water harvesting (SAWH) continues to attract attention among various water production methods, due to it being less dependent on climatic and geographical conditions. Water productivity and energy efficiency are the two most important evaluation indicators. Therefore, this review aims to comprehensively and systematically summarize and discuss the water productivity and energy efficiency enhancement methods for SAWH systems based on three levels, from material to component to system.
View Article and Find Full Text PDFAdv Mater
October 2024
Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Sorption-based atmospheric water harvesting (SAWH) is a promising approach for supplying water in off-grid arid regions. However, it is difficult to improve the SAWH efficiency because water undergoes multiple phase transformations, such as water vapor-water (desorption and condensation) in the desorption phase. To address this issue, an ultrahygroscopic temperature-responsive hydrogel nanofiber inspired by Tillandsia is developed, comprising poly N-isopropylacrylamide, poly N-dimethylacetamide, and carbon nanotubes and impregnated with lithium chloride (PCP@LiCl).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!