Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron sulfide (FeS) is a promising material for separating copper and arsenic from strongly acidic wastewater due to its S slow-release effect. However, uncertainties arise because of the constant changes in wastewater composition, affecting the selection of operating parameters and FeS types. In this study, the aging method was first used to prepare various controllable FeS nanoparticles to weaken the arsenic removal ability without affecting the copper removal. Orthogonal experiments were conducted, and the results identified the Cu/As ratio, HSO concentration, and FeS dosage as the three main factors influencing the separation efficiency. The backpropagation artificial neural network (BP-ANN) model was established to determine the relationship between the influencing factors and the separation efficiency. The correlation coefficient (R) of overall model was 0.9923 after optimizing using genetic algorithm (GA). The BP-GA model was also solved using GA under specific constraints, predicting the best solution for the separation process in real-time. The predicted results show that the high temperature and long aging time of FeS were necessary to gain high separation efficiency, and the maximum separation factor can reached 1,400. This study provides a suitable sulfurizing material and a set of methods and models with robust flexibility that can successfully predict the separation efficiency of copper and arsenic from highly acidic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2023.05.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!