Ethnopharmacological Relevance: Saposhnikovia divaricata (Turcz.) Schischk (SD; called "fangfeng" in China) has been widely used in the clinical treatment of rheumatoid arthritis (RA) and has shown well therapeutic effects, but the specific mechanisms of action of its bioactive phytochemicals remain unclear.
Aim Of The Study: This study aimed to investigate the molecular biological mechanism of SD in treating RA through a pharmacology-based strategy. The SD-specific core ingredient Prangenidin was screened for further in-depth study.
Materials And Methods: The bioactive phytochemicals of SD and potential targets for the treatment of RA were screened by network pharmacology, and phytochemicals-related parameters such as pharmacology, and toxicology were evaluated. The protein interaction network was established to screen the core targets, and the correlation between the core targets and RA was further validated by bioinformatics strategy. Finally, molecular docking of core components and corresponding targets was performed. The in vitro experiments were performed to elucidate the regulation of Prangenidin on MH7A cells and on the PI3K/AKT pathway, and the in vivo therapeutic effect of Prangenidin was validated in collagen-induced arthritis (CIA) mice.
Results: A total of 18 bioactive phytochemicals and 66 potential target genes intersecting with the screened RA disease target genes were identified from SD. Finally, core ingredients such as wogonin, beta-sitosterol, 5-O-Methylvisamminol, and prangenidin and core targets such as PTGS2, RELA, and AKT1 were obtained. The underlying mechanism of SD in treating RA might be achieved by regulating pathways such as PI3K/AKT, IL-17 pathway, apoptosis, and multiple biological processes to exert anti-inflammatory and immunomodulatory effects. Molecular docking confirmed that all core ingredients and key targets had great docking activity. Prangenidin inhibited viability, migration, and invasion, and induced apoptosis in MH7A cells. Prangenidin also reduced the production of IL-1β, IL-6, IL-8, MMP-1, and MMP-3. Molecular analysis showed that Prangenidin exerts its regulatory effect on MH7A cells by inhibiting PI3K/AKT pathway. Treatment with Prangenidin ameliorated synovial inflammation in the joints of mice with CIA.
Conclusion: Our findings provide insights into the therapeutic effects of SD on RA, successfully predicting the effective ingredients and potential targets, which could suggest a novel theoretical basis for further exploration of its molecular mechanisms. It also revealed that Prangenidin inhibited viability, migration, invasion, cytokine, and MMPs expression, and induced apoptosis in RA FLSs via the PI3K/AKT pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.117586 | DOI Listing |
3 Biotech
January 2025
Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India.
Unlabelled: This study investigated the anticancer phytocompounds in leaf extracts of Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.
View Article and Find Full Text PDF3 Biotech
January 2025
Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India.
Unlabelled: The present study evaluated the effects of 5-methyltetrahydrofolate (5-MTHF) and aqueous extract on diabetes. An in silico docking study with select bioactive compounds showed strong binding affinities of folates with glucose metabolism-related proteins. In vitro assay showed 5-MTHF's superior inhibitory activity on alpha-amylase compared to folic acid.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
School of Biomedical Engineering, IIT (BHU), Varanasi, 221005, UP, India.
Wound healing can often be delayed due to non-favourable physiological conditions. Current treatment strategies have many limitations, and the development of novel therapeutic patches is urgently required. Herein, we have developed a hydrogel-based wound healing patch containing quercetin nanocrystals to enhance quercetin solubility, leading to sustained release and improved bioactivity.
View Article and Find Full Text PDFPhytochemistry
December 2024
College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China. Electronic address:
L., a member of the Oleaceae family with approximately 60 species worldwide, is widely distributed in the warm temperate zone of the northern hemisphere. It is not only used as a folk medicine for treating various illnesses but is also documented in medical books.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institution, Mirza, Assam, India.
Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!