Detailed study of collagen, vasculature, and innervation in the human cardiac conduction system.

Cardiovasc Pathol

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; Department of Pathology, Fimlab Laboratories, Arvo Ylpön katu 4, 33520 Tampere, Finland. Electronic address:

Published: February 2024

Background: The cardiac conduction system (CCS) creates and propagates electrical signals generating the heartbeat. This study aimed to assess the collagen content, vasculature, and innervation in the human sinoatrial and atrioventricular CCS, and surrounding tissue.

Materials And Methods: Ten sinoatrial and 17 atrioventricular CCS samples were collected from 17 adult human autopsied hearts. Masson trichrome stain was used to examine collagen, cardiomyocytes, and fat proportions. Immunohistochemically, vessels and lymphatics were studied by CD31 (pan-endothelial marker) and D2-40 (lymphatic endothelium marker) antibodies. General nerve densities were assessed by S100, while sympathetic nerves were studied using tyrosine hydroxylase, parasympathetic nerves with choline acetyltransferase, and GAP43 (neural growth marker) antibodies looked at these components. All components were quantified with QuPath software (Queens University, Belfast, Northern Ireland).

Results: Interstitial collagen was more than two times higher in the sinoatrial vs. atrioventricular CCS (55% vs. 22%). The fat content was 6.3% in the sinoatrial CCS and 6.5% in the atrioventricular CCS. The lymphatic vessel density was increased in the sinoatrial and atrioventricular CCS compared to the surrounding tissue and was lower in the sinoatrial vs. atrioventricular CCS (P=.043). The overall vasculature density did not differ between the SA and AV CCS. The overall innervation and neural growth densities were significantly increased in the CCS compared to the surrounding tissue. The overall innervation was higher in the atrial vs. ventricular CCS (P=.018). The neural growth was higher in the atrial vs. ventricular CCS (P=.018). The sympathetic neural supply was dominant in all the studied regions with the highest density in the sinoatrial CCS.

Conclusions: Our results provide new insights into the unique morphology of the human CCS collagen, fat, vasculature, and innervation. A deeper understanding of the CCS anatomical components and morphologic substrates' role will help in elucidating the causes of cardiac arrhythmias and provide a basis for further therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carpath.2023.107603DOI Listing

Publication Analysis

Top Keywords

atrioventricular ccs
24
sinoatrial atrioventricular
20
ccs
14
vasculature innervation
12
neural growth
12
innervation human
8
cardiac conduction
8
conduction system
8
marker antibodies
8
ccs compared
8

Similar Publications

Article Synopsis
  • Cardiac resynchronization therapy (CRT) is effective for treating heart failure but is under-researched in patients with common comorbidities like atrial fibrillation (AF).
  • The SMART registry enrolled 2035 patients to assess CRT response based on clinical outcomes over 12 months, focusing on factors like all-cause mortality, hospitalizations, and quality of life.
  • Results showed 58.9% of patients improved, but factors like age, AF, and diabetes were linked to lower CRT responsiveness, with patients having AF experiencing higher rates of hospitalizations and mortality compared to those in normal rhythm.
View Article and Find Full Text PDF

Meis transcription factors regulate cardiac conduction system development and adult function.

Cardiovasc Res

December 2024

Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.

Aims: The Cardiac Conduction System (CCS) is progressively specified during development by interactions among a discrete number of Transcriptions Factors that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain transcription factors (TFs) with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity, however the basis for these alterations has not been established.

View Article and Find Full Text PDF

The G4 resolvase Dhx36 modulates cardiomyocyte differentiation and ventricular conduction system development.

Nat Commun

October 2024

Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.

Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes.

View Article and Find Full Text PDF

The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information.

View Article and Find Full Text PDF

Introduction: The cardiac conduction system (CCS) is crucial for maintaining adequate cardiac frequency at rest and modulation during exercise. Furthermore, the atrioventricular node and His-Purkinje system are essential for maintaining atrioventricular and interventricular synchrony and consequently maintaining an adequate cardiac output.

Areas Covered: In this review article, we examine the anatomy, physiology, and pathophysiology of the CCS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!