Sea turtles, in comparison with marine mammals, sea birds, and fishes, are the most affected by microplastics in terms of number of individuals impacted and concentration within each organism. The ubiquitous nature and persistence of microplastics in the environment further compromises sea turtles as many species are currently vulnerable, endangered, or critically endangered. The objective of this study was to quantify microplastic contamination in unviable loggerhead sea turtle eggs (Caretta caretta). Eggs were collected from seven locations along the northwest coast of Florida. A total of 70 nests and 350 eggs were examined. Microplastics (n = 510) were found in undeveloped loggerhead sea turtle eggs across all seven sites, suggesting that maternal transference and/or exchange between the internal and external environment were possible. The frequency found was 7.29 ± 1.83 microplastic pieces per nest and 1.46 ± 0.01 per egg. Microplastics were categorized based on color, shape, size, and type of polymer. The predominant color of microplastics were blue/green (n = 236), shape was fibers (n = 369), and length was 10-300 μm (n = 191). Identified fragments, films, beads and one foam (n = 187) had the most common area of 1-10 μm (n = 45). Micro-Fourier Transform Infrared (μ-FTIR) spectroscopy analysis demonstrated that polyethylene (11 %) and polystyrene (7 %) were the main polymer types. For the first time microplastics were found in unviable, undeveloped loggerhead sea turtle eggs collected in northwest Florida. This work provides insight into the distribution patterns of microplastic pollutants in loggerhead sea turtle eggs and may extend to other species worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169434 | DOI Listing |
PeerJ
January 2025
Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Laboratório de Genética e Evolução Molecular, Vitória, Espírito Santo, Brazil.
Sea turtles are highly migratory and predominantly inhabit oceanic environments, which poses significant challenges to the study of their life cycles. Research has traditionally focused on nesting females, utilizing nest counts and mark-recapture methods, while male behavior remains understudied. To address this gap, previous studies have analyzed the genotypes of females and hatchlings to indirectly infer male genotypes and evaluate the extent of multiple paternity within populations.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Conservation Biology Research Group, Department of Biology, University of Malta, MSD2080 Msida, Malta.
The conservation of loggerhead sea turtles () in the central Mediterranean benefits from an in-depth understanding of its population genetic structure and diversity. This study, therefore, investigates in Maltese waters by genetically analysing 63 specimens collected through strandings and in-water sampling, using mitochondrial DNA control region and microsatellites. Additionally, the two nests detected in Malta in 2023 were analysed for the same markers.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale 62 per Casamassima Km 3, 70010 Valenzano, Italy.
Sea turtles face numerous threats, often stemming from human activities, resulting in high mortality rates. One of the primary risks they encounter is posed by fishing activities. In the South Adriatic Sea, the extensive trawling fleet often impacts sea turtles, and in recent years, a specific disorder, known as gas embolism (GE), and the associated disease known as decompression sickness (DCS), has emerged as a new threat.
View Article and Find Full Text PDFJ Zoo Wildl Med
December 2024
Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, FL 34936, USA.
Currently there are few antibacterial dosage regimens established to be safe and effective for sea turtles. Pharmacokinetic evaluation of antibiotics is an essential step in establishing accurate dosage guidelines for a particular species. Metronidazole is an antibiotic that is effective against anaerobic bacteria and some protozoa.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3280, Australia.
Semiaquatic taxa, including humans, often swim at the air-water interface where they waste energy generating surface waves. For fully marine animals however, theory predicts the most cost-efficient depth-use pattern for migrating, air-breathing species that do not feed in transit is to travel at around 2 to 3 times the depth of their body diameter, to minimize the vertical distance traveled while avoiding wave drag close to the surface. This has rarely been examined, however, due to depth measurement resolution issues at the surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!