Intrinsic timescales and predictive allostatic interoception in brain health and disease.

Neurosci Biobehav Rev

Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, People's Republic of China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada. Electronic address:

Published: February 2024

The cognitive neuroscience of brain diseases faces challenges in understanding the complex relationship between brain structure and function, the heterogeneity of brain phenotypes, and the lack of dimensional and transnosological explanations. This perspective offers a framework combining the predictive coding theory of allostatic interoceptive overload (PAIO) and the intrinsic neural timescales (INT) theory to provide a more dynamic understanding of brain health in psychiatry and neurology. PAIO integrates allostasis and interoception to assess the interaction between internal patterns and environmental stressors, while INT shows that different brain regions operate on different intrinsic timescales. The allostatic overload can be understood as a failure of INT, which involves a breakdown of proper temporal integration and segregation. This can lead to dimensional disbalances between exteroceptive/interoceptive inputs across brain and whole-body levels (cardiometabolic, cardiovascular, inflammatory, immune). This approach offers new insights, presenting novel perspectives on brain spatiotemporal hierarchies and interactions. By integrating these theories, the paper opens innovative paths for studying brain health dynamics, which can inform future research in brain health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184903PMC
http://dx.doi.org/10.1016/j.neubiorev.2023.105510DOI Listing

Publication Analysis

Top Keywords

brain health
16
brain
10
intrinsic timescales
8
health disease
8
timescales predictive
4
predictive allostatic
4
allostatic interoception
4
interoception brain
4
health
4
disease cognitive
4

Similar Publications

Article Synopsis
  • A study evaluated the impacts of divalproex sodium on brain volumes in patients with mild to moderate Alzheimer’s disease using MRI scans over 24 months.
  • The results indicated that participants receiving divalproex experienced a significantly higher decline in hippocampal and brain volumes compared to those on placebo, along with a faster decline in cognitive function as measured by the Mini-Mental State Examination.
  • The findings suggest that divalproex treatment is linked to accelerated brain volume loss and potentially increased cognitive impairment, although the long-term effects remain unclear.
View Article and Find Full Text PDF
Article Synopsis
  • The study tested whether divalproex sodium (valproate) could prevent or delay agitation and psychosis in individuals with moderate Alzheimer's disease, enrolling 313 participants.
  • After two years of treatment, results showed no significant difference between the valproate and placebo groups regarding the time to development of agitation or psychosis.
  • Additionally, the valproate group experienced more side effects and showed greater reductions in brain volume, indicating potential adverse effects of the treatment.
View Article and Find Full Text PDF

Objective: To delineate the trajectories of Aβ42 level in cerebrospinal fluid (CSF), fludeoxyglucose F18 (FDG) uptake using positron emission tomography, and hippocampal volume using magnetic resonance imaging and their relative associations with cognitive change at different stages in aging and Alzheimer disease (AD).

Design: Cohort study.

Setting: The 59 study sites for the Alzheimer's Disease Neuroimaging Initiative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!