AI Article Synopsis

  • * Cystic Fibrosis (CF) results from mutations in the CFTR gene and shares several respiratory issues with COPD, like airway obstruction and chronic inflammation, leading to similar systemic health problems.
  • * The article reviews how smoking and other factors can cause acquired CFTR dysfunction in COPD patients, which may contribute to additional health complications, but this dysfunction is typically less severe than that seen in cystic fibrosis.

Article Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, respiratory symptoms, inflammation of the airways, and systemic manifestations of the disease. Genetic susceptibility and environmental factors are important in the development of the disease, particularly exposure to cigarette smoke which is the most notable risk factor. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are the cause of cystic fibrosis (CF), which shares several pathophysiological pulmonary features with COPD, including airway obstruction, chronic airway inflammation and bacterial colonization; in addition, both diseases also present systemic defects leading to comorbidities such as pancreatic, gastrointestinal, and bone-related diseases. In patients with COPD, systemic CFTR dysfunction can be acquired by cigarette smoking, inflammation, and infection. This dysfunction is, on average, about half of that found in CF. Herein we review the literature focusing on acquired CFTR dysfunction and the potential role in the pathogenesis of comorbidities associated with COPD and chronic bronchitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2023.107499DOI Listing

Publication Analysis

Top Keywords

cftr dysfunction
12
acquired cftr
8
copd chronic
8
cystic fibrosis
8
copd
5
potential systemic
4
systemic effects
4
effects acquired
4
cftr
4
dysfunction
4

Similar Publications

Effects of Elexacaftor-Tezacaftor-Ivacaftor on Nasal and Sinus Symptoms in Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Lyon, France.

Background: New CFTR Modulator triple therapy Elexacaftor-Ivacaftor-Tezacaftor (ETI) prove efficacy in pulmonary outcomes. However, its impact on nasal sinus symptoms in children has not been specifically studied. The aim of this study is to evaluate the impact of this therapy on nasal sinus symptomatology in children aged 6-12 years.

View Article and Find Full Text PDF

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Perinatal dysfunction of innate immunity in cystic fibrosis.

Sci Transl Med

January 2025

First Department of Medicine, Cardiology, TUM University Hospital, Technical University of Munich, School of Medicine and Health, Munich 81675, Germany.

In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.

View Article and Find Full Text PDF

Immune cells express a variety of ion channels and transporters in the plasma membrane and intracellular organelles, responsible of the transference of charged ions across hydrophobic lipid membrane barriers. The correct regulation of ion transport ensures proper immune cell function, activation, proliferation, and cell death. Cystic fibrosis (CF) is a genetic disease in which the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel gene is defective, consequently, the CFTR protein is dysfunctional, and the chloride efflux in CF cells is markedly impaired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!