High-carbohydrate (HC) diets may lead to the deterioration of the antioxidant and immune properties of Yellow River carp and the healthy development of the industry. Studies in mammals have found that sea buckthorn flavonoids (SF) improve antioxidant and immune performance. Therefore, this study comprehensively evaluated the effects of SF on Yellow River carp using in vitro and feeding trials with an HC diet. Control (C, 27.23 %), high-carbohydrate (HC, 42.99 %), and HC + SF (0.1 %, 0.2 %, and 0.4 %) groups were studied in a 10-week aquaculture experiment. The main findings were as follows: (1) SF scavenged O, ·OH, and DPPH free radicals in vitro, which gradually increased with the SF concentration. (2) The antioxidant and immune performance of Yellow River carp was enhanced by dietary supplementation with SF, which involved the regulation of activities of antioxidant and immune enzymes, as well as their changes at the transcription and protein levels. In terms of antioxidant properties, compared to the HC group, HC + SF significantly decreased the activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase and the contents of HO and malondialdehyde in the serum and hepatopancreas. The activities of glutathione, glutathione-Px, superoxide dismutase, catalase, and total antioxidant activity in the HC-diet group. In contrast, the addition of SF increased antioxidant enzyme activity. In the hepatopancreas and muscles, SF regulated and activated Nrf2-Keap1, a key signaling pathway for oxidative stress. SF significantly increased the mRNA expression levels of downstream genes (gr, ho-1, cat, and sod) regulated by nrf2. In terms of immune performance, 0.4 % SF markedly increased the activity of immune-related enzymes. SF inhibited the gene expression of pro-inflammatory factors induced by the HC diet and promoted the gene expression of anti-inflammatory factors. In addition, the resistance of Yellow River carp to Aeromonas hydrophila was enhanced by SF. In summary, SF supplementation can reduce oxidative stress and inflammatory harm caused by the HC diet and improve the antioxidant and immune performance of Yellow River carp to varying degrees.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2023.109289DOI Listing

Publication Analysis

Top Keywords

antioxidant immune
24
yellow river
24
river carp
24
immune performance
20
performance yellow
12
antioxidant
9
sea buckthorn
8
improve antioxidant
8
oxidative stress
8
gene expression
8

Similar Publications

From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges.

J Nanobiotechnology

January 2025

Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever.

View Article and Find Full Text PDF

polysaccharides alleviate metabolic dysfunction-associated steatotic liver disease through enhancing hepatocyte RelA/ HNF1α signaling.

World J Gastroenterol

January 2025

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.

Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.

Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.

View Article and Find Full Text PDF

Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy.

Life Metab

December 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China.

Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment.

View Article and Find Full Text PDF

Introduction: Chinese herbal medicines are relatively inexpensive and have fewer side effects, making them an effective option for improving health and treating diseases. As a result, they have gained more attention in recent years. The weaning period is a critical stage in the life of yaks, often inducing stress in calves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!