Passive exposure to visual motion leads to short-term changes in the optomotor response of aging zebrafish.

Behav Brain Res

Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Türkiye; Department of Molecular Biology and Genetics Zebrafish Facility, Bilkent University, Ankara, Türkiye; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Türkiye. Electronic address:

Published: March 2024

Numerous studies have shown that prior visual experiences play an important role in sensory processing and adapting behavior in a dynamic environment. A repeated and passive presentation of visual stimulus is one of the simplest procedures to manipulate acquired experiences. Using this approach, we aimed to investigate exposure-based visual learning of aging zebrafish and how cholinergic intervention is involved in exposure-induced changes. Our measurements included younger and older wild-type zebrafish and ache mutants with decreased acetylcholinesterase activity. We examined both within-session and across-day changes in the zebrafish optomotor responses to repeated and passive exposure to visual motion. Our findings revealed short-term (within-session) changes in the magnitude of optomotor response (i.e., the amount of position shift by fish as a response to visual motion) rather than long-term and persistent effects across days. Moreover, the observed short-term changes were age- and genotype-dependent. Compared to the initial presentations of motion within a session, the magnitude of optomotor response to terminal presentations decreased in the older zebrafish. There was a similar robust decrease specific to ache mutants. Taken together, these results point to short-term (within-session) alterations in the motion detection of adult zebrafish and suggest differential effects of neural aging and cholinergic system on the observed changes. These findings further provide important insights into adult zebrafish optomotor response to visual motion and contribute to understanding this reflexive behavior in the short- and long-term stimulation profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2023.114812DOI Listing

Publication Analysis

Top Keywords

visual motion
16
optomotor response
16
passive exposure
8
exposure visual
8
short-term changes
8
aging zebrafish
8
repeated passive
8
ache mutants
8
zebrafish optomotor
8
short-term within-session
8

Similar Publications

Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.

View Article and Find Full Text PDF

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).

View Article and Find Full Text PDF

Are We Moving Too Fast?: Representation of Speed in Static Images.

J Cogn

January 2025

Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, The Netherlands.

Despite pictures being static representations, they use various cues to suggest dynamic motion. To investigate the effectiveness of different motion cues in conveying speed in static images, we conducted 3 experiments. In Experiment 1, we compared subjective speed ratings given for motion lines trailing behind movers, suppletion lines replacing parts of the movers and backfixing lines set in the background against the baseline of having no extra cue.

View Article and Find Full Text PDF

Introduction Thoracolumbar fractures, particularly burst fractures, represent a significant health concern due to their prevalence and functional impact. This study evaluates the efficacy of short-segment posterior fixation with intermediate screw instrumentation in treating unstable thoracolumbar fractures. Methods A prospective study was conducted from July 2022 to December 2023, including 26 patients with traumatic thoracolumbar fractures.

View Article and Find Full Text PDF

Background: Anatomic total shoulder arthroplasty (aTSA) is often delayed due to concerns about a more rapid loss of postoperative improvements in younger, more active patients. This retrospective study investigated the effects of patient age on activity-specific functional outcomes at a minimum of 10 years following aTSA.

Methods: A retrospective review of a shoulder arthroplasty database was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!