Reverse Logistics (RL) of end-of-use/end-of-life products is a key approach for supporting the transition to a circular economy. However, lack of knowledge and experience in designing RL is one of the barriers for companies in implementing successful RL. This research proposes an RL support tool (RLST) for designing RL systems, developed through iterative cycles of theoretical development and empirical testing/feedback from potential users. The RLST builds upon the principles of configuration systems to adapt the various aspects of RL design into a knowledge base and, subsequently, into an Excel-based support tool - in addition to allowing companies to assess their motivation/driver and set the context (e.g., product characteristics, the existence and nature of Extended Producer Responsibility (EPR) legislation), it supports the design of the RL network/channel and other aspects such as stakeholder collaboration, legislation, consumer behaviour and incentives, use of digital technologies, key performance indicators and factors around governance/programme management. Such a tool can be helpful for practitioners in addressing the knowledge gaps, stimulating discussions among stakeholders for scenario building and for analysing how different scenarios might work. The research advances the knowledge on RL systems design for the circular economy along with, for the first time, building knowledge and application of configuration systems in the field of RL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119819 | DOI Listing |
Sci Total Environ
January 2025
Tyndall Centre for Climate Change Research, School of Engineering, 5th Floor, Engineering A, University of Manchester, Manchester M13 9PL, UK. Electronic address:
In Santiago, Chile, 315,000 liquid crystal display (LCD) monitors are discarded annually. Of this amount, the formal sector of refurbishment and recycling manages only 5 %, creating the conditions for the emergence of informal management systems. This study provides the first comprehensive environmental and circularity assessment of monitor treatment across multiple impact categories, identifying trade-offs associated with formal and informal operations.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Institute of Biochemical Engineering/Institut für Bioverfahrenstechnik, University of Stuttgart, Stuttgart, Germany.
While rising greenhouse gases cause climate change, global economies ask for resilient solutions for the business of the future. Biomanufacturing may well serve as a pillar of a circular economy with minimised environmental impact. Therefore, innovations of the lab need to successfully bridge the imminent 'death-valley of innovation' for making commercial production happen.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy.
In polymer science and technology, the distinction between thermoplastic and thermosetting materials has always been sharp, clear, and well-documented: indeed, the former can theoretically be reprocessed a potentially infinite number of times by heating, forming, and subsequent cooling. This cannot be done in the case of thermosetting polymers due to the presence of cross-links that covalently bind the macromolecular chains, giving rise to insoluble and infusible polymeric networks. In 2011, the discovery of vitrimers revolutionized the classification mentioned above, demonstrating the possibility of using new materials that consist of covalent adaptable networks (CANs): this way, they can change their topology through thermally-activated bond-exchange reactions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CEDON - Center for Economics and Corporate Sustainability, Faculty of Economics and Business, KU Leuven, Warmoesberg 26, B-1000, Brussel, Belgium.
Through a natural experiment setting in Hong Kong, this study examines the effects of financial incentives and nudges on consumer choices among three types of coffee cups: bring-your-own-cup (BYOC), shop-provided reusable cups, and disposable cups. Our dataset comprises 223 structured observations of coffee shops with 522 data points. The financial incentive-a direct price instrument set as a discount-is offered exclusively to customers who bring their own cups, while shop-provided (reusable) cups are not eligible.
View Article and Find Full Text PDFSci Rep
January 2025
Bio-Circular-Green-Economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!