Background: In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC-5 fibroblasts and primary peritoneal murine macrophages were examined.

Methods: The secondary metabolites of the tested extracts were characterized by UPLC-HRMS/MS and Pearsons correlation was used to correlate them with the antiprotozoal activity.

Results: Overall, the non-polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum [IC of 1.08 μg/mL, selectivity index (S.I. 26.11) and sc 5] and L. infantum (IC of 12.7 μg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most potent fraction against T. b. rhodesiense (IC of 8.17 μg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid (18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso-iridobelamal A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono- and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid irridal iso-iridobelamal A, were highly correlated to I. pseudacorus NPF anti- T. b. rhodesiense activity. The ADME study revealed proper drug likeness properties for certain highly corelated secondary metabolites.

Conclusion: This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly explored antiprotozoal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725014PMC
http://dx.doi.org/10.1186/s12906-023-04294-0DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
confusa sealy
8
infectious diseases
8
confusa npf
8
pseudacorus npf
8
confusa
5
pseudacorus
5
npf
5
correlation secondary
4
metabolites
4

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

The genus Nocardia as a source of new antimicrobials.

NPJ Antimicrob Resist

January 2025

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.

The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

24-epibrassinolide regulates oxytetracycline-induced phytotoxicity and its detoxification mechanism.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. Electronic address:

Oxytetracycline (OTC), a crop-absorbable antibiotic, poses a health risk to humans through the food chain. Conversely, 24-epibrassinolide (EBL), a plant growth hormone, mitigates the toxic effects of various pollutants on plants. However, the mechanism by which exogenous EBL affects the growth of rape seedlings exposed to OTC remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!