Depending on the strain of immunodeficient mice, infection can be asymptomatic or cause transient or prolonged skin disease. infection of NOD. Cg- /SzJ (NSG) mice results in clinical skin disease that progresses in severity. Amoxicillin metaphylaxic and prophylaxic therapy prevents transmission and infection of mice after exposure to and inhibits the growth of isolates at therapeutic doses that are clinically achievable in mice. Amoxicillin is not efficacious for treatment of transient clinical skin disease in athymic nude mice, but the efficacy of amoxicillin treatment has not previously been characterized in -infected NSG mice. In the current study, NSG mice were treated with amoxicillin beginning at 5 wk after exposure to at which time they had well-established clinical signs of disease. Clinical signs were scored to assess disease progression, regression, and reappearance. Our results showed that amoxicillin treatment for 3 or 6 wk reduced the clinical scores of NSG mice with -associated clinical disease. In addition, withdrawal of treatment led to the recurrence of clinical signs. Collectively, our data suggest that amoxicillin treatment is effective in alleviating the clinical signs associated with infection for the duration of treatment in NSG mice. Clinical intervention with antibiotics for -infected NSG mice can be an option for management of -related clinical disease either before or during facility-wide remediation efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752358PMC
http://dx.doi.org/10.30802/AALAS-CM-23-000039DOI Listing

Publication Analysis

Top Keywords

nsg mice
28
clinical signs
16
clinical disease
12
skin disease
12
amoxicillin treatment
12
clinical
11
mice
11
-associated clinical
8
disease
8
mice clinical
8

Similar Publications

Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.

View Article and Find Full Text PDF

Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.

View Article and Find Full Text PDF

Malignant pleural mesothelioma is a neoplasm that is often detected late due to nonspecific symptoms. This study utilized NSG-SGM3 mice to examine interactions between a human-derived mesothelioma reporter cell line (MZT-Luc2-mCherry) and the host's myeloid compartment. Tumor growth was assessed using optical tomography, while cytokine/chemokine production was analyzed via multiplex assay.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.

View Article and Find Full Text PDF

High-Throughput Dissociation and Orthotopic Implantation of Breast Cancer Patient-Derived Xenografts.

J Vis Exp

December 2024

Division of Exercise Physiology, Department of Health Professions, West Virginia University School of Medicine; Cancer Institute, West Virginia University School of Medicine; 3Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine;

Article Synopsis
  • Patient-derived xenografts (PDXs) offer a valuable approach to study breast cancer (BC) by mimicking real tumor environments and systemic effects, which in vitro models cannot achieve.
  • A new method for orthotopic implantation of BC PDXs in immunodeficient mice eliminates the need for anesthesia, is less invasive, and allows for faster and scalable tumor model development.
  • The validation process of the tumors includes assessing receptor status, confirming morphology, and verifying genetic similarity to patient samples, facilitating robust research across different BC subtypes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!