Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a mice and miR-29a mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a mice were verified by qRT-PCR and Western blot. Compared with miR-29a mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2023.112349 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China.
: Sjögren's syndrome (SS), an autoimmune disease, was characterized by sicca syndrome and systemic manifestations, presenting significant treatment challenges. Exosomes, naturally derived nanoparticles containing bioactive molecules, have garnered interest in regenerative medicine. The present study aimed to elucidate the immunoregulatory properties and mechanism of exosomes obtained from the stem cells derived from human exfoliated deciduous teeth (SHED-exos) in SS-induced sialadenitis.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China. Electronic address:
Stem Cell Rev Rep
December 2024
Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
Comb Chem High Throughput Screen
October 2024
Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
Background: Gastric cancer, one of the most familiar adenocarcinomas of the gastrointestinal tract, ranks third in the world in cancer-related deaths. Traditional Chinese medicine can suppress the growth of tumors, and the underlying mechanism may be associated with the tumor microenvironment. Here, we investigated the anti-cancer effects of the Qingrexiaoji recipe on gastric cancer and the underlying molecular mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!