Association between altered white matter networks and post operative ventricle volume in shunt-treated pediatric hydrocephalus.

Brain Res Bull

School of Biomedical Engineering, Western University, London, Ontario, Canada; Western Institute for Neuroscience, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine, Western University, London, Ontario, Canada. Electronic address:

Published: January 2024

Objective: The objective of this study was to use probabilistic tractography in combination with white matter microstructure metrics to characterize differences in white matter networks between shunt-treated pediatric hydrocephalus patients relative to healthy controls. We were also able to explore the relationship between these white matter networks and postoperative ventricle volume.

Methods: Network-based statistics was used in combination with whole-brain probabilistic tractography to determine dysregulated white matter networks in a sample of patients with pediatric hydrocephalus (n = 8), relative to controls (n = 36). Metrics such as streamline count (SC), as well as the mean of the fractional anisotropy along a tract, axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) were assessed. In networks that were found to be significantly different for patients with hydrocephalus, tracts were evaluated to assess their relationship with postoperative lateral ventricle volume.

Results: Patients with pediatric hydrocephalus had various networks that were either upregulated or downregulated relative to controls across all white matter measures. Predominately, network dysregulation occurred in tracts involving structures located outside of the frontal lobe. Furthermore tracts with values suggesting decreased white matter integrity were not only found between subcortical structures, but also cortical structures. While there were various tracts with white matter metrics that were initially predicted by lateral ventricle volume, only two tracts remained significant following multiple comparisons.

Conclusions: This cross-sectional study in pediatric patients with hydrocephalus and healthy controls demonstrated using whole-brain probabilistic tractography that there are various networks with dysregulated white matter integrity in hydrocephalus patients relative to controls. These dysregulated networks have tracts connecting structures throughout the brain, and the regions were predominately located centrally and posteriorly. Postoperative ventricle volume did not predict the white matter integrity of many tracts. Future studies with larger sample sizes are needed to further understand these results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2023.110847DOI Listing

Publication Analysis

Top Keywords

white matter
40
matter networks
16
pediatric hydrocephalus
16
ventricle volume
12
probabilistic tractography
12
relative controls
12
matter integrity
12
white
10
matter
10
networks
8

Similar Publications

Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.

Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Correction: The two sides of Phobos: Gray and white matter abnormalities in phobic individuals.

Cogn Affect Behav Neurosci

January 2025

Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.

View Article and Find Full Text PDF

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Single cell approaches define neural stem cell niches and identify microglial ligands that can enhance precursor-mediated oligodendrogenesis.

Cell Rep

January 2025

Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!