Exposure to bisphenol A (BPA) during gestation leads to fetal growth restriction (FGR), whereby the underlying mechanisms remain unknown. Here, we found that FGR patients showed higher levels of BPA in the urine, serum, and placenta; meanwhile, trophoblast ferroptosis was observed in FGR placentas, as indicated by accumulated intracellular iron, impaired antioxidant molecules, and increased lipid peroxidation products. To investigate the role of ferroptosis in placental and fetal growth, BPA stimulation was performed both in vivo and in vitro. BPA exposure during gestation was associated with FGR in mice; also, it induces ferroptosis in mouse placentas and human placental trophoblast. Pretreatment with ferroptosis inhibitor ferritin-1 (Fer-1) alleviated BPA-induced oxidative damage and cell death. Notably, BPA reduced the trophoblastic expression of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which regulated tissue growth and organ size. YAP or TAZ siRNA enhanced BPA-induced ferroptosis, suggesting that trophoblast ferroptosis is dependent on YAP/TAZ downregulation after BPA stimulation. Consistently, the protein levels of YAP/TAZ were also reduced in FGR placentas. Further results revealed that silencing YAP/TAZ promoted BPA-induced ferroptosis through autophagy. Pretreatment with autophagy inhibitor chloroquine (CQ) attenuated BPA-induced trophoblast ferroptosis. Ferritinophagy, an autophagic degradation of ferritin (FTH1), was observed in FGR placentas. Similarly, BPA reduced the protein level of FTH1 in placental trophoblast. Pretreatment with iron chelator desferrioxamine (DFO) and NCOA4 (an autophagy cargo receptor) siRNA weakened the ferroptosis of trophoblast after exposure to BPA, indicating that autophagy mediates ferroptosis in BPA-stimulated trophoblast by degrading ferritin. In summary, ferroptosis was featured in BPA-associated FGR and trophoblast injury; the regulation of ferroptosis involved the YAP/TAZ-autophagy-ferritin axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2023.12.013 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
Purpose: Graves' ophthalmopathy (GO), the most common extrathyroidal manifestation of Graves' disease, is disabling and disfiguring. Recent studies have shown that statins have a protective effect on individuals with GO. Statins were reported to trigger ferroptosis in some disorders, but little is known about whether statins protect against GO via ferroptosis.
View Article and Find Full Text PDFChem Res Toxicol
January 2025
Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!