This work aimed to evaluate the influence of the mechanical defibrillation technique on the pinhão nanosuspensions production obtained from the whole pinhão, its coat, and almond. The nanosuspensions were characterized concerning their composition, morphology, thermal stability, rheological behavior, compound profiling, and cytotoxicity. The results revealed a significant fiber content in pinhão coat nanosuspension (63.12 ± 0.52 %) and non-fiber carbohydrates in whole pinhão (59.00 ± 0.13 %) and almond (74.39 ± 0.23 %) nanosuspensions. The defibrillation process led to micro/nano-sized fibers in pinhão coat nanosuspensions and small-size starch granules in almond nanosuspensions. The nanosuspensions containing pinhão coat exhibited a gel-like behavior, while almond nanosuspensions displayed liquid-like characteristics. Pinhão coat nanosuspensions presented a significant content of flavonoids and phytosterols, whereas almond-based nanosuspensions contained substantial sugar amounts. No cytotoxicity was observed at the concentrations evaluated. These findings demonstrated that the defibrillation technique impacted the properties of pinhão constituents, allowing their application in new product development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.138195 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFLangmuir
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.
View Article and Find Full Text PDFAnn Bot
January 2025
Seed Biology and Technology Group, Department of Biological Sciences, Royal Holloway University of London, TW20 0EX, Egham, United Kingdom.
The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.
View Article and Find Full Text PDFPhytoKeys
January 2025
Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland University of Gdansk Gdańsk Poland.
The genus includes some of the most important ornamental plants. The aim of this work was to study the seed morphology of species from East Kazakhstan, including seed coat structure. An analysis focused on five taxa from various natural environmental conditions.
View Article and Find Full Text PDFACS Omega
January 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!