Diabetic encephalopathy (DE) is a common central nervous system complication of diabetes mellitus without effective therapy currently. Recent studies have highlighted synaptic mitochondrial damages as a possible pathological basis for DE, but the underlying mechanisms remain unclear. Our previous work has revealed that phosphatidate phosphatase Lipin1, a critical enzyme involved with phospholipid synthesis, is closely related to the pathogenesis of DE. Here, we demonstrate that Lipin1 is significantly down-regulated in rat hippocampus of DE. Knock-down of Lipin1 within hippocampus of normal rats induces dysregulation of homeostasis in synaptic mitochondrial dynamics with an increase of mitochondrial fission and a decrease of fusion, then causes synaptic mitochondrial dysfunction, synaptic plasticity deficits as well as cognitive impairments, similar to that observed in response to chronic hyperglycemia exposure. In contrast, an up-regulation of Lipin1 within hippocampus in the DE model ameliorates this cascade of dysfunction. We also find that the effect of Lipin1 that regulating mitochondrial dynamics results from maintaining appropriate phospholipid components in the mitochondrial membrane. In conclusion, alterations in hippocampal Lipin1 contribute to hippocampal synaptic mitochondrial dysfunction and cognitive deficits observed in DE. Targeting Lipin1 might be a potential therapeutic strategy for the clinical treatment of DE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770635 | PMC |
http://dx.doi.org/10.1016/j.redox.2023.102996 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Cerebral infarction is a common type of stroke with high incidence and disability rates, and most patients experience varying degrees of cognitive impairment. The manifestations and severity of post-infarction cognitive impairment are influenced by multiple interacting factors, and its pathophysiological mechanisms are highly complex, involving pericyte degeneration, excessive generation of reactive oxygen species (ROS), overproduction of glutamate, and overactivation of autophagy. After cerebral infarction, abnormal pericyte function activates neuroinflammation and facilitates the entry of inflammatory mediators into the brain; detachment of pericytes from blood vessels disrupts the integrity of the blood-brain barrier.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
March 2025
Department of Neurology, University Hospital Gießen and Marburg, Justus-Liebig-University Gießen, Gießen, Germany.
Extracellular vesicles (EVs) convey complex signals between cells that can be used to promote neuronal plasticity and neurological recovery in brain disease models. These EV signals are multimodal and context-dependent, making them unique therapeutic principles. This review analyzes how EVs released from various cell sources control neuronal metabolic function, neuronal survival and plasticity.
View Article and Find Full Text PDFAdv Biol (Weinh)
March 2025
Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany.
Aging is a progressive and irreversible process, serving as the primary risk factor for neurodegenerative disorders. This study aims to identify the molecular mechanisms underlying physiological aging within the substantia nigra, which is primarily affected by Parkinson's disease, and to draw potential conclusions on the earliest events leading to neurodegeneration in this specific brain region. The characterization of essential stages in aging progress can enhance knowledge of the mechanisms that promote the development of Parkinson's disease.
View Article and Find Full Text PDFJ Neurochem
March 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis.
View Article and Find Full Text PDFInflammopharmacology
March 2025
University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS), Panjab University, Chandigarh, 160014, India.
Background: Alzheimer's disease (AD), one of the most common neurodegenerative disorders, is characterised by hallmark abnormalities such as amyloid-β plaques and neurofibrillary tangles (NFTs). Emerging evidence suggests that faulty insulin signalling contributes to these pathological features, impairing critical cellular and metabolic processes.
Objective: This review aims to elucidate the role of insulin signalling in the central nervous system (CNS) under normal and pathological conditions and to explore therapeutic approaches targeting insulin pathways in AD and other neurodegenerative diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!