Anterior pituitary cell function requires a high level of protein synthesis and secretion which depend heavily on mitochondrial adenosine triphosphate production and functional endoplasmic reticula. Obesity adds stress to tissues, requiring them to adapt to inflammation and oxidative stress, and adding to their allostatic load. We hypothesized that pituitary function is vulnerable to the stress of obesity. Here, we utilized a 10- to 15-week high-fat diet (HFD, 60%) in a thermoneutral environment to promote obesity, testing both male and female FVB.129P mice. We quantified serum hormones and cytokines, characterized the metabolic phenotype, and defined changes in the pituitary transcriptome using single-cell RNA-sequencing analysis. Weight gain was significant by 3 weeks in HFD mice, and by 10 weeks all HFD groups had gained 20 g. HFD females (15 weeks) had increased energy expenditure and decreased activity. All HFD groups showed increases in serum leptin and decreases in adiponectin. HFD caused increased inflammatory markers: interleukin-6, resistin, monocyte chemoattractant protein-1, and tumor necrosis factorα. HFD males and females also had increased insulin and increased TSH, and HFD females had decreased serum prolactin and growth hormone pulse amplitude. Pituitary single-cell transcriptomics revealed modest or no changes in pituitary cell gene expression from HFD males after 10 or 15 weeks or from HFD females after 10 weeks. However, HFD females (15 weeks) showed significant numbers of differentially expressed genes in lactotropes and pituitary stem cells. Collectively, these studies reveal that pituitary cells from males appear to be more resilient to the oxidative stress of obesity than females and identify the most vulnerable pituitary cell populations in females.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771268 | PMC |
http://dx.doi.org/10.1210/endocr/bqad191 | DOI Listing |
Diabetes Obes Metab
December 2024
Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Aims: Hypothalamic endoplasmic reticulum stress (ERS) and mitochondrial dysfunction are two important mechanisms involved in the pathophysiology of obesity, which can be reversed by aerobic exercise to improve organ function. Mitofusion 2 (Mfn2), a mitochondrial membrane protein, affects both mitochondrial dynamics and ER morphology. This study explored the contribution of hypothalamic Mfn2 to exercise-induced improvements in energy homeostasis and peripheral metabolism and the underlying mechanisms involved.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong Province, China. Electronic address:
High-fat diet (HFD) -induced microglial activation contributes to hypothalamic inflammation and obesity, but the mechanisms linking microglia to structural changes remain unclear. This study explored the role of microglia in impairing hypothalamic synaptic plasticity in diet-induced obesity (DIO) mice and evaluated the therapeutic potential of semaglutide (Sema) and minocycline (MI). Six-week-old C57BL/6J mice were divided into low-fat diet (LFD) and HFD groups.
View Article and Find Full Text PDFLife Sci
December 2024
Biochemistry Department, Faculty of Pharmacy, Mansoura University, Egypt. Electronic address:
Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.
View Article and Find Full Text PDFClin Sci (Lond)
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Chronic inflammatory diseases, e.g., obesity, cardiovascular disease, and type 2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
Berberine is a promising bioactive compound that has gained great attention against numerous diseases but its low solubility and poor systemic bioavailability hinders its clinical applicability. Therefore, this study attempted to enhance the therapeutic potential of berberine by its nanoencapsulation. Berberine loaded guar-acacia gum nanocomplexes (Ber/Gu-AGNCs) were prepared by ionic complexation method; characterized and evaluated for anti-obesity activity in high fat diet (HFD) induced obese rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!