AI Article Synopsis

  • * However, challenges such as production complexity, potential toxicity, and the feasibility of using natural materials in living systems limit their application.
  • * This review focuses on the synthesis and advantages of nucleobase-decorated supramolecular biomaterials, while also addressing current challenges and future prospects in the field.

Article Abstract

The fabrication of supramolecular materials for biomedical applications such as drug delivery, bioimaging, wound-dressing, adhesion materials, photodynamic/photothermal therapy, infection control (as antibacterial), etc. has grown tremendously, due to their unique properties, especially the formation of hydrogen bonding. Nevertheless, void space in the integration process, lack of feasibility in the construction of supramolecular materials of natural origin in living biological systems, potential toxicity, the need for complex synthesis protocols, and costly production process limits the actual application of nanomaterials for advanced biomedical applications. On the other hand, hydrogen bonding from nucleobases is one of the strategies that shed light on the blurred deployment of nanomaterials in medical applications, given the increasing reports of supramolecular polymers that promote advanced technologies. Herein, we review the extensive body of literature about supramolecular functional biomaterials based on nucleobase hydrogen bonding pertinent to different biomedical applications. It focuses on the fundamental understanding about the synthesis, nucleobase-decorated supramolecular architecture, and novel properties with special emphasis on the recent developments in the assembly of nanostructures via hydrogen-bonding interactions of nucleobase. Moreover, the challenges, plausible solutions, and prospects of the so-called hydrogen bonding interaction from nucleobase for the fabrication of functional biomaterials are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c01097DOI Listing

Publication Analysis

Top Keywords

biomedical applications
16
hydrogen bonding
16
hydrogen-bonding interactions
8
nucleobase-decorated supramolecular
8
supramolecular materials
8
functional biomaterials
8
supramolecular
6
applications
5
interactions nucleobase-decorated
4
supramolecular polymer
4

Similar Publications

Stepwise Modulation of Bridged Single-Benzene-Based Fluorophores for Materials Science.

Chemistry

December 2024

Universitat Duisburg-Essen, Institute of organic chemistry, Universitätsstraße 7, 45117, Essen, GERMANY.

In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler p scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms.

View Article and Find Full Text PDF

Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation.

View Article and Find Full Text PDF

The rapid growth of nanotechnology has opened new frontiers in biomedical applications, particularly through the use of metal nanoparticles. This study explores the green synthesis of copper nanoparticles (CuNPs) using an aqueous extract of Pleurotus ostreatus (PO-CuNPs), and their characterization through UV-visible spectroscopy, FTIR, SEM, and EDAX. The synthesized PO-CuNPs demonstrated exceptional antioxidant activity, evident in hydrogen peroxide scavenging and phosphomolybdenum assays.

View Article and Find Full Text PDF

Poly(2-Hydroxymethyl-2-oxazoline) as Super-hydrophilic Antifouling Polymer.

Angew Chem Int Ed Engl

December 2024

Ghent University, Department of Organic CHemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Non-ionic "super-hydrophilic" polymers generally possess non-fouling characteristics and can suppress non-specific interactions with blood proteins. Here, we revitalized a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline and explored the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.

View Article and Find Full Text PDF

Liquid metal electrodes enabled cascaded on-chip dielectrophoretic separation of large-size-range particles.

Lab Chip

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, P. R. China.

The separation of large-size-range particles of complex biological samples is critical but yet well resolved. As a label-free technique, dielectrophoresis (DEP)-based particle separation faces the challenge of how to configure DEP in an integrated microfluidic device to bring particles of various sizes into the effective DEP force field. Herein, we propose a concept that combines the passive flow fraction mechanism with the accumulative DEP deflection effect in a cascaded manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: