A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The potential of nano graphene oxide and chlorhexidine composite membranes for use as a surface layer in functionally graded membranes for periodontal lesions. | LitMetric

Membranes have been used for treating periodontal defects and play a crucial role in guided bone regeneration applications. Nano graphene oxide have been exploited in tissue engineering due to its biomechanical properties. Its composite formulations with hydroxyapatite and chitosan with controlled degradation could aid in becoming part of a surface layer in a functionally graded membrane. The aim of the study was to synthesize chitosan and composite formulations of nano graphene oxide, hydroxyapatite and chlorhexidine digluconate using solvent casting technique and to characterize the physiochemical, mechanical, water vapor transmission rate (barrier), degradation and antimicrobial potential of the membranes. Altogether four different membranes were prepared (CH, CCG, 3511 and 3322). Results revealed the chemical interactions of hydroxyapatite, chitosan and nanographene oxide due to inter and intra molecular hydrogen bonding. The tensile strength of 3322 (33.72 ± 6.3 MPa) and 3511 (32.06 ± 5.4 MPa) was higher than CH (27.46 ± 9.6 MPa). CCG showed the lowest water vapor transmission rate (0.23 ± 0.01 g/h.m) but the highest weight loss at day 14 (76.6 %). 3511 showed a higher drug release after 72 h (55.6 %) Significant biofilm growth inhibition was observed for all membranes. 3511 showed complete inhibition against A. actinomycetemcomitans. Detailed characterization of the synthesized membranes revealed that 3511 composite membrane proved to be a promising candidate for use as a surface layer of membranes for guided bone regeneration of periodontal lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725336PMC
http://dx.doi.org/10.1007/s10856-023-06767-7DOI Listing

Publication Analysis

Top Keywords

nano graphene
12
graphene oxide
12
surface layer
12
membranes
8
layer functionally
8
functionally graded
8
periodontal lesions
8
guided bone
8
bone regeneration
8
composite formulations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!