Enhancement of nitrogen cycling and functional microbial flora by artificial inoculation of biological soil crusts in sandy soils of highway slopes.

Environ Sci Pollut Res Int

Key Laboratory of Road Traffic Environmental Protection Technology, Ministry of Transport, Beijing, 100088, China.

Published: January 2024

Biological soil crusts (BSCs) are common in arid and semi-arid ecosystems and enhance soil stability and fertility. Highway slopes severely deplete the soil ecological structure and soil nutrients, hindering plant survival. The construction of highway slope BSCs under human intervention is critical to ensure the long-term stable operation of the slope ecosystem. This study investigated the variation rules and interaction mechanisms between soil nutrients and microbial communities in the subsoil BSCs on highway slopes. Bacterial 16S rRNA high-throughput sequencing was employed to investigate the dynamic compositional changes in the microbial community and perform critical metabolic predictive analyses of functional bacteria. This study revealed that the total soil nitrogen increased significantly from 0.557 to 0.864 g/kg after artificial inoculation with desert Phormidium tenue and Scytonema javanicum. Actinobacteria (44-48%) and Proteobacteria (28-31%) were the dominant phyla in all samples. The abundance of Cyanobacteria, Cytophagaceae, and Chitinophagaceae increased significantly after inoculation. PICRUST analysis showed that the main metabolic pathways of soil microorganisms on highway slopes included cofactor and vitamin, nucleotide, and amino acid metabolisms. These findings suggest that the artificial inoculation with Phormidium tenue and Scytonema javanicum could alter soil microbial distribution to promote soil development on highway slopes toward nutrient accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-31461-0DOI Listing

Publication Analysis

Top Keywords

highway slopes
20
artificial inoculation
12
soil
10
biological soil
8
soil crusts
8
soil nutrients
8
phormidium tenue
8
tenue scytonema
8
scytonema javanicum
8
highway
6

Similar Publications

Experimental study on hydrophysical properties and slope planting of ecological composite material solidified loess.

J Environ Manage

January 2025

School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China. Electronic address:

The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection.

View Article and Find Full Text PDF

The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed.

View Article and Find Full Text PDF

The issue of slope stability in earthquakes has become increasingly prominent with the construction of many infrastructure projects such as highways, bridges, and tunnels. To explore the dynamic response characteristics of bedding rock slopes in an earthquake, the three-dimensional dynamic finite-difference method (TDD-FDM) in this study is used to establish simplified rock slope models, taking a bedding rock slope with alternatively distributed soft and hard rock layers in Yunnan, China as a prototype. The dynamic response mechanism of layered rock slopes containing different thicknesses, locations, and quantities of soft rock layers was studied under different excitation directions of seismic waves.

View Article and Find Full Text PDF

The high-altitude Duku Highway is characterized by complex terrain changes and frequent geological hazards, which severely impact the lives of local residents and the sustainable development of the regional economy. The lack of understanding of terrain deformation, coupled with scarce foundational observation data, makes it challenging to apply mainstream susceptibility assessment methods such as slope modeling and causality analysis. Consequently, this study utilizes Sentinel-1 A data and employs the SBAS-InSAR technique to extract and analyze the deformation characteristics of 184 hazard areas along the Duku Highway over nearly three years.

View Article and Find Full Text PDF

Developing inexpensive, highly active, robust bi-functional electrocatalysts for energy conversion and storage technology remains a vital challenge. Herein, we hierarchically constructed 3D binder-free NiMoO/CoFeO/NF heterostructure material via an effective and facile two-step hydrothermal process. The strong electronic coupling among NiMoO and CoFeO counterparts alternates the charge environment at the NiMoO/CoFeO interface, which builds the highway for a rapid and continuous charge transfer process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!