Climate change and increasing population pressure have put the agriculture sector in an arduous situation. With increasing demand for agricultural production overuse of inputs have accentuated the negative impact on environment. Hence, sustainable agriculture is gaining prominence in recent times with an emphasis on judicious and optimum use of resources. The field of nanotechnology can immensely help in achieving sustainability in agriculture at various levels. Use of nutrients and plant protection chemicals in nano-form can increase their efficacy even at reduced doses thus decreasing their pernicious impact. Seed priming is one of the important agronomic practices with widely reported positive impacts on germination, seedling growth and pathogen resistance. In the current study, the effect and efficacy of selenium nanoparticles synthesized using phyto-extracts as a seed priming agent is studied. This nanopriming enhanced the germination, hastened the seedling emergence and growth with an increase in seedling vigour and nutrient status. This eco-friendly and economical method of synthesizing nanoparticles of various nutrient minerals can optimize the resource use thus helping in sustainable agriculture by reducing environment damage without compromising on efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724239PMC
http://dx.doi.org/10.1038/s41598-023-49621-0DOI Listing

Publication Analysis

Top Keywords

selenium nanoparticles
8
sustainable agriculture
8
seed priming
8
beneficial effects
4
effects bio-fabricated
4
bio-fabricated selenium
4
seed
4
nanoparticles seed
4
seed nanopriming
4
nanopriming agent
4

Similar Publications

Background: Recent advances in nanomedicine have derived novel prospects for development of various bioactive nanoparticles and nanocomposites with significant antibacterial and antifungal properties. This study aims to investigate some characteristics of the novel Se-NPs/CuO nanocomposite such as morphological, physicochemical, and optical properties, as well as to assess the antibacterial activity of this fabricated composite in different concentrations against some MDR Gram-positive and Gram-negative clinical bacterial isolates.

Methods: The Se-NPs/CuO nanocomposite was fabricated using the chemical deposition method.

View Article and Find Full Text PDF

Microbial metabolic enzymes play a crucial role in several biological processes that have a significant impact on growth and proliferation. Therefore, inhibiting specific key metabolic enzymes can be an applicable approach for developing antimicrobial agents that selectively target pathogens. In the current study, selenium nanoparticles (Se NPs) extracellularly biosynthesized by Nocardiopsis sp.

View Article and Find Full Text PDF

Implementing a hydrogen economy on an industrial scale poses challenges, particularly in developing cost-effective and stable catalysts for water electrolysis. This study explores the catalytic potential of selenium nanoparticles (Se-NPs) synthesized via a simple chemical bath deposition method for electrochemical and photoelectrochemical (PEC) water splitting. The successful fabrication of Se-NPs on fluorine-doped tin oxide (FTO) electrodes has been confirmed using a wide range of analytical tools like X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Preparation, physicochemical characterization, and immunomodulatory activity of ovalbumin peptide-selenium nanoparticles.

Food Chem

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. Electronic address:

During the preparation and development of selenium nanoparticles (SeNPs), natural bioactive peptides are added to enhance their physicochemical characteristics and functional properties. Among these properties, immunomodulatory activities, which include activating immune cells to strengthen immunity, constitute the major functions of the immune system. To obtain SeNPs with enhanced immunomodulation, ovalbumin peptide (OP) was used as a stabilizer, yielding OP-SeNPs.

View Article and Find Full Text PDF

Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!