Background: Efficient infection control during carbapenem-resistant Enterobacterales outbreaks demands rapid and simple techniques for outbreak investigations. WGS, the current gold standard for outbreak identification, is expensive, time-consuming and requires a high level of expertise. Fourier-transform infrared (FTIR) spectroscopy (IR Biotyper) is a rapid typing method based on infrared radiation applied to samples, which provides a highly specific absorption spectrum.
Objectives: To investigate an outbreak of OXA-48-producing Escherichia coli in real-time using FTIR and subsequently compare the results with WGS.
Methods: Twenty-one isolates were collected during a nosocomial outbreak, and identification and antibiotic susceptibilities were confirmed by VITEK®2. FTIR was conducted for all isolates, and nine representative isolates were sequenced.
Results: FTIR was able to correctly determine the clonal relatedness of the isolates and to identify the outbreak cluster, as confirmed by WGS. By WGS, isolates in the main FTIR cluster belonged to the same MLST type and core-genome MLST type, and they harboured similar plasmids and resistance genes, whereas the singletons external to the FTIR cluster had different genetic content.
Conclusions: FTIR can operate as a rapid, efficient and reliable first-line tool for outbreak investigations during a real-time ongoing E. coli outbreak, which can contribute to limiting the spread of pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkad387 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
Contamination of water resources by artificial coloring agents and the increasing incidence of bacterial illnesses are two significant environmental and public health issues that are getting worse day by day. Traditional treatment techniques frequently fail to address these problems adequately in a sustainable and environmental friendly way. In response, our study presents a novel photocatalyst that demonstrates superior photodegradation capability and antibacterial qualities in catering the above issues.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, 88035-972, Brazil.
A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.
View Article and Find Full Text PDFBiodegradation
January 2025
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608502, India.
PLoS One
December 2024
Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
The present investigation seeks to customize the optical, magnetic, and structural characteristics of nickel oxide (NiO) nanopowders through chromium, iron, cobalt, copper, and zinc doping to enhance optoelectronic applications. In this regard, the preparation of pristine NiO and Ni × O (X = Cr, Fe, Co, Cu, and Zn) powders was successfully achieved through the co-precipitation method. The X-ray powder diffraction was employed to examine the prepared powders' phase formation and crystal structure characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!