Molecular docking studies on α-amylase inhibitory peptides from milk of different farm animals.

J Dairy Sci

Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates. Electronic address:

Published: May 2024

AI Article Synopsis

  • Milk-derived peptides are being researched for their potential in managing diabetes, specifically through probiotic fermentation methods.
  • Results showed that peptides from fermented milk, particularly those derived from camel and goat milk, had the strongest inhibitory effects on pancreatic α-amylase (PAA), an enzyme involved in carbohydrate digestion.
  • The study suggests that these fermented peptides could be effective in diabetes management by inhibiting PAA activity.

Article Abstract

Milk-derived peptides have emerged as a popular mean to manage various lifestyle disorders such as diabetes. Fermentation is being explored as one of the faster and efficient way of producing peptides with antidiabetic potential. Therefore, in this study, an attempt was made to comparatively investigate the pancreatic α-amylase (PAA) inhibitory properties of peptides derived from milk of different farm animals through probiotic fermentation. Peptide's identification was carried out using liquid chromatography-quadrupole time-of-flight mass spectrometry and inhibition mechanisms were characterized by molecular docking. Results obtained showed a PAA-IC value (the amount of protein equivalent needed to inhibit 50% of enzymes) between 2.39 and 36.1 µg protein equivalent for different fermented samples. Overall, Pediococcus pentosaceus MF000957-derived fermented milk from all animals indicated higher PAA inhibition than other probiotic derived fermented milk (PAA-IC values of 6.01, 3.53, 15.6, and 10.8 µg protein equivalent for bovine, camel, goat, and sheep fermented milk). Further, molecular docking analysis indicated that camel milk-derived peptide IMEQQQTEDEQQDK and goat milk-derived peptide DQHQKAMKPWTQPK were the most potent PAA inhibitory peptides. Overall, the study concluded that fermentation derived peptides may prove useful in for managing diabetes via inhibition of carbohydrate digesting enzyme PAA.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2023-24118DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
protein equivalent
12
fermented milk
12
inhibitory peptides
8
milk farm
8
farm animals
8
paa inhibitory
8
µg protein
8
milk-derived peptide
8
peptides
6

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.

View Article and Find Full Text PDF

From Antipsychotic to Neuroprotective: Computational Repurposing of Fluspirilene as a Potential PDE5 Inhibitor for Alzheimer's Disease.

J Comput Chem

January 2025

Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.

Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.

View Article and Find Full Text PDF

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!