AI Article Synopsis

  • Machine learning models, specifically deep neural networks (DNNs), are increasingly used in decision-making alongside humans, emphasizing the need for reliable classifications.
  • This paper highlights the use of DNNs to automate the extraction of cancer-related data from electronic pathology reports, while introducing new selective classification methods to improve accuracy and reduce the number of unreliable predictions.
  • The proposed methods outperform existing models by achieving high accuracy with lower rejection rates, demonstrating their effectiveness in processing complex medical data.

Article Abstract

Introduction: Machine learning algorithms are expected to work side-by-side with humans in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to address real-world classification. Although the strength of activation in DNNs is often correlated with the network's confidence, in-depth analyses are needed to establish whether they are well calibrated.

Method: In this paper, we demonstrate the use of DNN-based classification tools to benefit cancer registries by automating information extraction of disease at diagnosis and at surgery from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we introduce multiple methods for selective classification to achieve a target level of accuracy on multiple classification tasks while minimizing the rejection amount-that is, the number of electronic pathology reports for which the model's predictions are unreliable. We evaluate the proposed methods by comparing our approach with the current in-house deep learning-based abstaining classifier.

Results: Overall, all the proposed selective classification methods effectively allow for achieving the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. On in-distribution validation and holdout test data, with all the proposed methods, we achieve on all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; nevertheless, in this case as well, the rejection rate from the best among the proposed methods achieving 97% accuracy or higher is lower than the rejection rate based on the DAC.

Conclusions: We show that although both approaches can flag those samples that should be manually reviewed and labeled by human annotators, the newly proposed methods retain a larger fraction and do so without retraining-thus offering a reduced computational cost compared with the in-house deep learning-based abstaining classifier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467893PMC
http://dx.doi.org/10.1016/j.jbi.2023.104576DOI Listing

Publication Analysis

Top Keywords

proposed methods
16
rejection rate
16
level accuracy
12
cancer registries
8
pathology reports
8
selective classification
8
target level
8
in-house deep
8
deep learning-based
8
learning-based abstaining
8

Similar Publications

Online vibration state identification of multi-rigid-body system based on self-healing model.

Sci Rep

December 2024

School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.

The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.

View Article and Find Full Text PDF

The study suggests a better multi-objective optimization method called 2-Archive Multi-Objective Cuckoo Search (MOCS2arc). It is then used to improve eight classical truss structures and six ZDT test functions. The optimization aims to minimize both mass and compliance simultaneously.

View Article and Find Full Text PDF

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.

View Article and Find Full Text PDF

This study investigates the implementation of collaborative route planning between trucks and drones within rural logistics to improve distribution efficiency and service quality. The paper commences with an analysis of the unique characteristics and challenges inherent in rural logistics, emphasizing the limitations of traditional methods while highlighting the advantages of integrating truck and drone technologies. It proceeds to review the current state of development for these two technologies and presents case studies that illustrate their application in rural logistics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!