Exploring novel organocatalytic-acetylated pea starch blends in the development of hot-pressed bioplastics.

Int J Biol Macromol

Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark. Electronic address:

Published: February 2024

Acetylated starch shows enhanced thermal stability and moisture resistance, but its compatibilization with other more hydrophilic polysaccharides remains poor or unknown. In this study, the feasibility of thermomechanically compounding organocatalytically acetylated pea starch (APS), produced at two different degrees of substitution with alkanoyl groups (DS, 0.39 and 1.00), with native pea starch (NPS), high (HMP) and low methoxyl (LMP) citrus pectin, and sugar beet pectin (SBP, a naturally acetylated pectin) for developing hot-pressed bioplastics was studied. Generally, APS decreased hydrogen bonding (ATR-FTIR) and crystallinity (XRD) of NPS films at different levels, depending on its DS. The poor compatibility between APS and NPS or HMP was confirmed by ATR-FTIR imaging. Contrariwise, APS with DS 1 was effectively thermomechanically mixed with the acetylated SBP matrix, maintaining homogeneous distribution within it (ATR-FTIR imaging). APS (any DS) significantly increased the visible/UV light opacity of NPS-based films and decreased their water vapor transmission rate (WVTR, by ca. 11 %) and surface water wettability (by ca. 3 times). In comparison to NPS-APS films, pectin-APS showed higher visible/UV light absorption, tensile strength (ca.2.9-4.4 vs ca.2.4 MPa), and Young's modulus (ca.96-116 vs ca.60-70 MPa), with SBP-APS presenting significantly lower water wettability than the rest of the films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128740DOI Listing

Publication Analysis

Top Keywords

pea starch
12
hot-pressed bioplastics
8
atr-ftir imaging
8
visible/uv light
8
water wettability
8
aps
5
exploring novel
4
novel organocatalytic-acetylated
4
organocatalytic-acetylated pea
4
starch
4

Similar Publications

Slowly digestible starch impairs growth performance of broiler chickens offered low-protein diet supplemental higher amino acid densities by inhibiting the utilization of intestinal amino acid.

J Anim Sci Biotechnol

January 2025

Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

Background: The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds.

View Article and Find Full Text PDF

Formation and crystalline structure of spherulites from pea and high amylose maize starches.

Int J Biol Macromol

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:

Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.

View Article and Find Full Text PDF

Characterization of dynamic of the structural changes of legume starches during gelatinization.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

This study investigated the dynamic changes in legume starches (common vetch, mung bean, and pea) during gelatinization. All three starches displayed a similar pattern: water absorption and swelling at lower temperatures (50-65 °C), structural rupture at medium temperatures (65-75 °C), and melting/reorganization at higher temperatures (75-90 °C). Gelatinization likely starts with internal structural dissociation, as evidenced by the weakening of the double helix structure and decreasing order observed throughout the process.

View Article and Find Full Text PDF

A study was conducted to determine the effects of protease supplementation of field pea (in comparison with soybean meal; SBM) for broilers on apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA). One hundred and forty broiler chicks were divided into 35 groups of 4 birds/group and fed 5 diets in a completely randomized design (7 groups/diet) from 14 to 21 d of age. The diets were cornstarch-based containing SBM or field pea as the sole protein source without or with protease (ProSparity 250; CBS Bio Platforms, Calgary, AB, Canada) in 2 × 2 factorial arrangement, and N-free diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!