AI Article Synopsis

  • * A new hydrogel was created using cellulose nanofiber (CNF), poly pyrrole (PPy), and glycerol mixed with polyvinyl alcohol (PVA), improving its conductivity by 257.9% compared to a control.
  • * The modified hydrogel maintains conductivity at cold temperatures, demonstrates strong mechanical properties, and has a high gauge factor of 2.84, making it suitable for reliable strain sensing in monitoring human activities.

Article Abstract

Electro-conductive hydrogels emerge as a stretchable conductive materials with diverse applications in the synthesis of flexible strain sensors. However, the high-water content and low cross-links density cause them to be mechanically destroyed and freeze at subzero temperatures, limiting their practical applications. Herein, we report a one-pot strategy by co-incorporating cellulose nanofiber (CNF), Poly pyrrole (PPy) and glycerol with polyvinyl alcohol (PVA) to prepare hydrogel. The addition of PPy endowed the hydrogel with good conductivity (∼0.034 S/m) compared to the no PPy@CNF group (∼0.0095 S/m), the conductivity was increased by 257.9 %. The hydrogel exhibits comparable ionic conductivity at -18 °C as it does at room temperature. It's attributed to the glycerol as a cryoprotectant and the formation of hydrated [Zn(HO)] ions via strong interaction between Zn and water molecules. Moreover, the cellulose nanofiber intrinsically assembled into unique hierarchical structures allow for strong hydrogen bonds between adjacent cellulose and PPy polymer chains, greatly improve the mechanical strength (stress∼0.65 MPa, strain∼301 %) and excellent viscoelasticity (G'max ∼ 82.7 KPa). This novel PPy@CNF-PVA hydrogel exhibits extremely high Gauge factor (GF) of 2.84 and shows excellent sensitivity, repeatability and stability. Therefore, the hydrogel can serve as reliable and stable strain sensor which shows excellent responsiveness in human activities monitoration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128800DOI Listing

Publication Analysis

Top Keywords

strain sensor
8
polyvinyl alcohol
8
cellulose nanofiber
8
hydrogel exhibits
8
hydrogel
6
highly sensitive
4
sensitive anti-freezing
4
anti-freezing conductive
4
conductive strain
4
sensor based
4

Similar Publications

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

The sensor protein VdSLN1 is involved in regulating melanin biosynthesis and pathogenicity via MAPK pathway in Verticillium dahliae.

Fungal Genet Biol

January 2025

Team of Crop Verticillium wilt, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China. Electronic address:

The vascular wilt fungus Verticillium dahliae is a destructive soil-borne pathogen that causes yield loss on various economically important crops. Membrane-spanning sensor protein SLN1 have been demonstrated to contribute to virulence in varying degrees among numerous devastating fungal pathogens. However, the biological function of SLN1 in V.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Skin-Inspired and Self-Powered Piezoionic Sensors for Smart Wearable Applications.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China.

Bio-inspired by tactile function of human skin, piezoionic skin sensors recognize strain and stress through converting mechanical stimulus into electrical signals based on ion transfer. However, ion transfer inside sensors is significantly restricted by the lack of hierarchical structure of electrode materials, and then impedes practical application. Here, a durable nanocomposite electrode is developed based on carbon nanotubes and graphene, and integrated into piezoionic sensors for smart wearable applications, such as facial expression and exercise posture recognitions.

View Article and Find Full Text PDF

Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications.

Adv Mater

January 2025

Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.

Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!